KAIST POW 2014-13

서울대학교 어수강

[[PROBLEM]]

Prove that, for any unit vectors v_1,v_2,\cdots,v_n in \mathbb{R}^n , there exists a unit vector w in \mathbb{R}^n such that $\langle w\,,\,v_i\rangle\leq n^{-\frac{1}{2}}$ for all $i=1,\,2,\,\cdots,\,n$. (Here, $\langle\,\,\bullet\,\,,\,\bullet\,\,\rangle$ is a usual scalar product in \mathbb{R}^n .)

[[PROOF]]

[LEMMA]

For any vector v, w in \mathbb{R}^n ,

 $\text{if } \parallel v+w\parallel <\sqrt{\parallel v\parallel^2+\parallel w\parallel^2} \ \text{ then } \ \parallel v-w\parallel >\sqrt{\parallel v\parallel^2+\parallel w\parallel^2}.$

[PROOF OF LEMMA]

Let v, w in \mathbb{R}^n be given.

Suppose that $\|v+w\| < \sqrt{\|v\|^2 + \|w\|^2}$.

Since $\|v+w\|^2 = \|v\|^2 + \|w\|^2 + 2\langle v,w\rangle < \|v\|^2 + \|w\|^2$, $\langle v,w\rangle < 0$.

Thus $\|v-w\|^2 = \|v\|^2 + \|w\|^2 + 2\langle v, -w \rangle = \|v\|^2 + \|w\|^2 - 2\langle v, w \rangle > \|v\|^2 + \|w\|^2$.

Hence $\|v-w\| > \sqrt{\|v\|^2 + \|w\|^2}$.

Now, we go on to the main proof.

[MAIN PROOF]

Denote $V = \{v_1, v_2, \dots, v_n\}$, $V_i = V - \{v_i\}$ and $W = \langle V \rangle$, $W_i = \langle V_i \rangle$ for all $1 \le i \le n$.

[STEP1] Suppose $\dim W \leq n-1$. Then $\dim W^{\perp} \geq 1$, since $\dim \mathbb{R}^n = \dim W + \dim W^{\perp}$.

Thus there exist unit vector $w \in W^{\perp}$. Since $v_1, v_2, \cdots, v_n \in W$ and $w \in W^{\perp}$, $\langle w, v_i \rangle = 0$ for all $1 \leq i \leq n$. We are done.

[STEP2] Suppose that $\dim W = n$. Then $\dim W_i = n-1$ for all $1 \le i \le n$.

Thus $\dim W_i^{\perp} = 1$ for all $1 \leq i \leq n$. Hence there exist unit vector $w_i \in W_i^{\perp}$ for all $1 \leq i \leq n$.

[STEP3] By our lemma, $\parallel w_1+w_2\parallel \ \geq \ \sqrt{2}$ or $\parallel w_1-w_2\parallel \ \geq \ \sqrt{2}$.

(Since, if $\parallel w_1+w_2\parallel <\sqrt{2}$ then $\parallel w_1-w_2\parallel >\sqrt{2}$.)

WLOG, We may assume that $\parallel w_1+w_2\parallel \geq \sqrt{2}$. (Since, if $w_2{\in}W_2^{\perp}$ then $-w_2{\in}W_2^{\perp}$. So we can

choose $w_2{\in W_2^{\perp}}$ whose satisfies $\parallel w_1+w_2\parallel \ \geq \ \sqrt{2}$ in STEP2.)

Similarly, by our lemma, $\parallel \left(w_1+w_2\right)+w_3\parallel \ \geq \ \sqrt{3}$ or $\parallel \left(w_1+w_2\right)-w_3\parallel \ \geq \ \sqrt{3}$.

WLOG, We may assume that $\parallel w_1 + w_2 + w_3 \parallel \ \geq \ \sqrt{3} \,.$

Continuing in this way, WLOG, we have $\left\|\sum_{j=1}^n w_j\right\| \geq \sqrt{n}$.

$$\begin{aligned} \text{[STEP4] Let } w &= \frac{\displaystyle\sum_{i=1}^n w_i}{ \left\| \displaystyle\sum_{i=1}^n w_i \right\|}. \text{ Then } w \text{ is a unit vector.} \\ \text{Moreover, } \langle w, v_i \rangle &= \left\langle \frac{\displaystyle\sum_{j=1}^n w_j}{ \left\| \displaystyle\sum_{j=1}^n w_j \right\|}, v_i \right\rangle \\ &= \frac{1}{ \left\| \displaystyle\sum_{j=1}^n w_j \right\|} \sum_{j=1}^n \langle w_j, v_i \rangle \\ &= \frac{1}{ \left\| \displaystyle\sum_{j=1}^n w_j \right\|} \langle w_i, v_i \rangle \quad \text{(Since } w_j \in W_j^\perp \text{ and } v_i \in W_i, \ \langle w_j, v_i \rangle = 0 \text{ for all } j \neq i.)} \\ &\leq \frac{1}{ \left\| \displaystyle\sum_{j=1}^n w_j \right\|} \quad \text{(Since } w_i, v_i \text{ are unit vectors, } \langle w_i, v_i \rangle \leq 1.)} \\ &\leq n^{-\frac{1}{2}} \quad \text{(Since } \left\| \displaystyle\sum_{j=1}^n w_j \right\| \geq \sqrt{n} \text{) for all } 1 \leq i \leq n. \end{aligned}$$

Which is what we wanted. ■■