KAIST POW 2014-13 서울대학교 어수강

[[PROBLEM]]

Prove that, for any unit vectors $v_{1}, v_{2}, \cdots, v_{n}$ in \mathbb{R}^{n}, there exists a unit vector w in \mathbb{R}^{n} such that $\left\langle w, v_{i}\right\rangle \leq n^{-\frac{1}{2}}$ for all $i=1,2, \cdots, n$. (Here, $\langle\bullet, \bullet\rangle$ is a usual scalar product in \mathbb{R}^{n}.)

[[PROOF]]

```
[LEMMA]
For any vector \(v, w\) in \(\mathbb{R}^{n}\),
if \(\|v+w\|<\sqrt{\|v\|^{2}+\|w\|^{2}}\) then \(\|v-w\|>\sqrt{\|v\|^{2}+\|w\|^{2}}\).
[PROOF OF LEMMA]
Let \(v, w\) in \(\mathbb{R}^{n}\) be given.
Suppose that \(\|v+w\|<\sqrt{\|v\|^{2}+\|w\|^{2}}\).
Since \(\|v+w\|^{2}=\|v\|^{2}+\|w\|^{2}+2\langle v, w\rangle<\|v\|^{2}+\|w\|^{2},\langle v, w\rangle<0\).
Thus \(\|v-w\|^{2}=\|v\|^{2}+\|w\|^{2}+2\langle v,-w\rangle=\|v\|^{2}+\|w\|^{2}-2\langle v, w\rangle>\|v\|^{2}+\|w\|^{2}\).
Hence \(\|v-w\|>\sqrt{\|v\|^{2}+\|w\|^{2}}\).
```

Now, we go on to the main proof.

[MAIN PROOF]

Denote $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, V_{i}=V-\left\{v_{i}\right\}$ and $W=\langle V\rangle, W_{i}=\left\langle V_{i}\right\rangle$ for all $1 \leq i \leq n$.
[STEP1] Suppose $\operatorname{dim} W \leq n-1$. Then $\operatorname{dim} W^{\perp} \geq 1$, since $\operatorname{dim} \mathbb{R}^{n}=\operatorname{dim} W+\operatorname{dim} W^{\perp}$.
Thus there exist unit vector $w \in W^{\perp}$. Since $v_{1}, v_{2}, \cdots, v_{n} \in W$ and $w \in W^{\perp},\left\langle w, v_{i}\right\rangle=0$ for all $1 \leq i \leq n$. We are done.
[STEP2] Suppose that $\operatorname{dim} W=n$. Then $\operatorname{dim} W_{i}=n-1$ for all $1 \leq i \leq n$.
Thus $\operatorname{dim} W_{i}^{\perp}=1$ for all $1 \leq i \leq n$. Hence there exist unit vector $w_{i} \in W_{i}^{\perp}$ for all $1 \leq i \leq n$.
[STEP3] By our lemma, $\left\|w_{1}+w_{2}\right\| \geq \sqrt{2}$ or $\left\|w_{1}-w_{2}\right\| \geq \sqrt{2}$.
(Since, if $\left\|w_{1}+w_{2}\right\|<\sqrt{2}$ then $\left\|w_{1}-w_{2}\right\|>\sqrt{2}$.)
WLOG, We may assume that $\left\|w_{1}+w_{2}\right\| \geq \sqrt{2}$. (Since, if $w_{2} \in W_{2}^{\perp}$ then $-w_{2} \in W_{2}^{\perp}$. So we can
choose $w_{2} \in W_{2}^{\perp}$ whose satisfies $\left\|w_{1}+w_{2}\right\| \geq \sqrt{2}$ in STEP2.)

Similarly, by our lemma, $\left\|\left(w_{1}+w_{2}\right)+w_{3}\right\| \geq \sqrt{3}$ or $\left\|\left(w_{1}+w_{2}\right)-w_{3}\right\| \geq \sqrt{3}$.
WLOG, We may assume that $\left\|w_{1}+w_{2}+w_{3}\right\| \geq \sqrt{3}$.
Continuing in this way, WLOG, we have $\left\|\sum_{j=1}^{n} w_{j}\right\| \geq \sqrt{n}$.
[STEP4] Let $w=\frac{\sum_{i=1}^{n} w_{i}}{\left\|\sum_{i=1}^{n} w_{i}\right\|}$. Then w is a unit vector.
Moreover, $\left\langle w, v_{i}\right\rangle=\left\langle\frac{\sum_{j=1}^{n} w_{j}}{\left\|\sum_{j=1}^{n} w_{j}\right\|}, v_{i}\right\rangle$
$=\frac{1}{\left\|\sum_{j=1}^{n} w_{j}\right\|} \sum_{j=1}^{n}\left\langle w_{j}, v_{i}\right\rangle$
$=\frac{1}{\left\|\sum_{j=1}^{n} w_{j}\right\|}\left\langle w_{i}, v_{i}\right\rangle \quad\left(\right.$ Since $w_{j} \in W_{j}^{\perp}$ and $v_{i} \in W_{i},\left\langle w_{j}, v_{i}\right\rangle=0$ for all $j \neq i$. .)
$\leq \frac{1}{\left\|\sum_{j=1}^{n} w_{j}\right\|} \quad\left(\right.$ Since w_{i}, v_{i} are unit vectors, $\left\langle w_{i}, v_{i}\right\rangle \leq 1$.)
$\leq n^{-\frac{1}{2}}$ (Since $\left.\left\|\sum_{j=1}^{n} w_{j}\right\| \geq \sqrt{n}\right)$ for all $1 \leq i \leq n$.

Which is what we wanted.

