KAIST POW 2014-11 : Subsets of a countably infinite

 set2014학번 장기정
2014년 5월 24일

1 Problem

Prove or disprove that every uncountable collection of subsets of a countably infinite set must have two members whose intersection has at least 2014 elements.

2 Solution

The statement is true.
Let X be a countably infinite set, \mathcal{A} be an uncountable collection of subsets of X. Assume that every two members of \mathcal{A} has intersection having less than 2014 elements. Define a collection $\mathcal{B}=\{A \subset X| | A \mid \leq 2013\}$. Note that \mathcal{B} is a countable collection of subsets of X, hence $\mathcal{C}=\mathcal{A}-\mathcal{B}$ is an uncountable collection of subsets of X, that every two members of \mathcal{C} has intersection having less than 2014 elements.
Choose any 2014-element subset A of X. If there exist two elements B, C of $\mathcal{C},|B \cap C| \geq 2014$ hence contradicts with the assumption. So, there exists up to unique element of \mathcal{C} that includes A : hence we can define a function from $\{A \subset X \| A \mid=2014, \exists B \in \mathcal{C}[A \subset B]\}$ to \mathcal{C} by mapping subset to element that containing such subset. Moreover, this mapping is surjective, since for every $B \in \mathcal{C}$, there exists subset D of B that $|D|=2014$, from $|B| \geq 2014$ from definition. hence \mathcal{C}, which is image of surjective function in $\{A \subset X||A|=2014, \exists B \in \mathcal{C}[A \subset B]\} \subset\{A \subset X||A|=2014\}$ which is countable set, is countable set. But it contradicts with above discussion that \mathcal{C} is
uncountable, hence we can conclude that the initial assumption is false, so the statement is true.

