POW 2014-05

Let n, k be positive integers and let $A_1, A_2, ..., A_n$ be $k \times k$ real matrices. Prove or disprove that $\det(\sum_{i=1}^n A_i^T A_i) \ge 0.$

sol)

Let
$$A = \sum_{i=1}^{n} A_i^T A_i$$
 and $p(t) = \det (A - tI)$

Assume that p(0) < 0. Also, $\lim_{t \to -\infty} p(t) = \infty$.

By intermediate value theorem, $\exists \lambda < 0$ such that $p(\lambda) = 0$. Then, there exists an eigenvector X such that $AX = \lambda X$ and $X \neq O$.

$$\lambda(X^{T}X) = X^{T}(\lambda X) = X^{T}(AX) = X^{T}((\sum_{i=1}^{n} A_{i}^{T}A_{i})X) = \sum_{i=1}^{n} (X^{T}A_{i}^{T}A_{i}X) = \sum_{i=1}^{n} (A_{i}X)^{T}(A_{i}X)$$
$$\Rightarrow \lambda = \frac{\sum_{i=1}^{n} (A_{i}X)^{T}(A_{i}X)}{X^{T}X}$$

Since $X^T X > 0$ and $(A_i X)^T (A_i X) \ge 0$, $\lambda \ge 0$. It contradicts to the hypothesis. Thus, $p(0) \ge 0 \iff \det A \ge 0$