Let n, k be positive integers and let $A_{1}, A_{2}, \ldots, A_{n}$ be $k \times k$ real matrices. Prove or disprove that $\operatorname{det}\left(\sum_{i=1}^{n} A_{i}^{T} A_{i}\right) \geq 0$.
sol)

Let $A=\sum_{i=1}^{n} A_{i}^{T} A_{i}$ and $p(t)=\operatorname{det}(A-t I)$

Assume that $p(0)<0$.
Also, $\lim _{t \rightarrow-\infty} p(t)=\infty$.
By intermediate value theorem, $\exists \lambda<0$ such that $p(\lambda)=0$.
Then, there exists an eigenvector X such that $A X=\lambda X$ and $X \neq O$.
$\lambda\left(X^{T} X\right)=X^{T}(\lambda X)=X^{T}(A X)=X^{T}\left(\left(\sum_{i=1}^{n} A_{i}^{T} A_{i}\right) X\right)=\sum_{i=1}^{n}\left(X^{T} A_{i}^{T} A_{i} X\right)=\sum_{i=1}^{n}\left(A_{i} X\right)^{T}\left(A_{i} X\right)$
$\Rightarrow \lambda=\frac{\sum_{i=1}^{n}\left(A_{i} X\right)^{T}\left(A_{i} X\right)}{X^{T} X}$
Since $X^{T} X>0$ and $\left(A_{i} X\right)^{T}\left(A_{i} X\right) \geq 0, \lambda \geq 0$.
It contradicts to the hypothesis.
Thus, $p(0) \geq 0 \Leftrightarrow \operatorname{det} A \geq 0$

