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김범수

Consider Xn,x for each positive integer n and x ∈ I = [0, 1], a random variable having a
binomial distribution b(n, x). Then for any δ > 0, by Chebyshev’s inequality,
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Note that this inequality holds regardless of x.

Since its domain is compact, f is uniformly countinuous. That is, for any ε > 0, there is
δ > 0 such that |f(y)− f(z)| < ε for any y, z ∈ I with |y − z| < δ. Therefore,
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Moreover, since M = ‖f‖∞ <∞, the expectation is bounded irrespective of x:
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Finally, using |E[X]− E[Y ]| ≤ E[|X − Y |] and regardlessness of x, we can find N ∈ Z+

for any ε > 0 such that for all n ≥ N ,
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This exactly means Bn(f) converges to f uniformly. �
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