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Consider X, , for each positive integer n and x € I = [0, 1], a random variable having a
binomial distribution b(n,z). Then for any § > 0, by Chebyshev’s inequality,
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Note that this inequality holds regardless of x.

Since its domain is compact, f is uniformly countinuous. That is, for any € > 0, there is
d > 0 such that |f(y) — f(2)| < € for any y, z € I with |y — z| < . Therefore,
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Moreover, since M = || f]|,, < oo, the expectation is bounded irrespective of x:
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Note that E [f (%)} = B,(f;z) by construction.
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Finally, using |EF[X] — E[Y]| < E[|X — Y] and regardlessness of x, we can find N € Z*
for any € > 0 such that for all n > N,

1Bu(f) = fllo < e+ —2 < 9.
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This exactly means B,,(f) converges to f uniformly. [J



