KAIST POW 2013-22

20120480 Jimin Park

November 29, 2013

Problem. The only field automorphism of \mathbb{R} is $f(x)=x$.
Proof. Let f be a field automorphism of \mathbb{R}, so it satisfies $f(a+b)=f(a)+f(b)$, $f(a b)=f(a) f(b)$ for all $a, b \in \mathbb{R}$.
(1) $\forall a \in \mathbb{R}, f(a)=f(0+a)=f(0)+f(a)$, so $f(0)=0$.
(2) Since f is a bijective map, $\forall x \in \mathbb{R}$, if $x \neq 0, f(x) \neq f(0)=0$.
(3) $f(1)=f(1 * 1)=f(1)^{2}$, and by $(2), f(1)=1$.
(4) If $f(i)=i(i \in \mathbb{N})$, then $f(i+1)=f(i)+1=i+1$, so $f(i+1)=i+1$, and by the mathematical induction, $f(i)=i$ for all $i \in \mathbb{N}$.
(5) $\forall a \in \mathbb{R}, 0=f(0)=f(a+(-a))=f(a)+f(-a)$, so $\forall a \in \mathbb{R}, f(-a)=-f(a)$.
(6) Similarly, $\forall a \in \mathbb{R}$, if $a \neq 0, f\left(a^{-1} a\right)=f(1)=1$, so $\forall a \in \mathbb{R}, a \neq 0 \Rightarrow$ $f\left(a^{-1}\right)=f(a)^{-1}$.
(7) By (4) and (5), if $i \in \mathbb{Z},(i<0) f(i)=-f(-i)=-(-i)=i,(i=0) f(i)=$ $0=i$, or $(i>0) \quad f(i)=i \quad \because i \in \mathbb{N}$, so $\forall i \in \mathbb{Z}, f(i)=i$.
(8) By (6) and (7), if $i \in \mathbb{Z}, i \neq 0 \Rightarrow f(1 / i)=1 / i$.
(9) If $q \in \mathbb{Q}$, then $\exists a, b \in \mathbb{Z}$ such that $b \neq 0$, so by (7) and (8), $f(q)=f(a / b)=$ $a / b=q$, so $\forall q \in \mathbb{Q}, f(q)=q$.
(10) $\forall a \in \mathbb{R}, a>0 \Rightarrow \exists r \in \mathbb{R}, r \neq 0 \wedge r^{2}=a$, so by (2), $f(a)=f\left(r^{2}\right)=$ $f(r)^{2}>0$. And by (5), $\forall a \in \mathbb{R}, a<0 \Rightarrow f(a)=-f(-a)<0$. Therefore, $\forall a \in \mathbb{R}, a>0 \Leftrightarrow f(a)>0$ and $a<0 \Leftrightarrow f(a)<0$.
(11) $\mathrm{By}(10)$ and (5), $\forall a, b \in \mathbb{R}, a<b \Leftrightarrow b-a>0 \Leftrightarrow f(b-a)>0 \Leftrightarrow f(b)-f(a)>$ $0 \Leftrightarrow f(a)<f(b)$.
(12) By (9) and (11), $\forall a \in \mathbb{R}, \forall q \in \mathbb{Q}, a>q \Leftrightarrow f(a)>q$, and similarly, $\forall a \in \mathbb{R}, \forall q \in \mathbb{Q}, a<q \Leftrightarrow f(a)<q$.
(13) $\forall a, b \in \mathbb{R}$, if $a<b$, then $\exists n \in \mathbb{N}, n(b-a)>2$ (ex: $n=\left\lceil\frac{2}{b-a}\right\rceil$) so that $\exists m \in \mathbb{N}, n a<m<n b$ (ex: $m=\lfloor n a+2\rfloor$), and $a<\frac{m}{n}<b$. Therefore, $\forall a, b \in \mathbb{R}, \exists q \in \mathbb{Q}, a<q<b$.
(14) By (9) and (13) $\forall x \in \mathbb{R}, x<f(x) \Rightarrow \exists q \in \mathbb{Q}, x<q<f(x)$, which contradicts with (12). Similarly, $f(x)<x \Rightarrow \exists q \in \mathbb{Q}, f(x)<q<x$, which also contradicts with (12). Therefore, $\forall x \in \mathbb{R}$, there can be only one case, $x=f(x)$, so $\forall x \in \mathbb{R}, x=f(x)$.

