KAIST POW 2013-22

20120480 Jimin Park

November 29, 2013

Problem. The only field automorphism of \mathbb{R} is f(x) = x.

Proof. Let f be a field automorphism of \mathbb{R} , so it satisfies f(a+b) = f(a) + f(b), f(ab) = f(a)f(b) for all $a, b \in \mathbb{R}$.

- (1) $\forall a \in \mathbb{R}, f(a) = f(0+a) = f(0) + f(a)$, so f(0) = 0.
- (2) Since f is a bijective map, $\forall x \in \mathbb{R}$, if $x \neq 0$, $f(x) \neq f(0) = 0$.
- (3) $f(1) = f(1 * 1) = f(1)^2$, and by (2), f(1) = 1.
- (4) If f(i) = i $(i \in \mathbb{N})$, then f(i+1) = f(i) + 1 = i + 1, so f(i+1) = i + 1, and by the mathematical induction, f(i) = i for all $i \in \mathbb{N}$.
- (5) $\forall a \in \mathbb{R}, 0 = f(0) = f(a + (-a)) = f(a) + f(-a), \text{ so } \forall a \in \mathbb{R}, f(-a) = -f(a).$
- (6) Similarly, $\forall a \in \mathbb{R}$, if $a \neq 0$, $f(a^{-1}a) = f(1) = 1$, so $\forall a \in \mathbb{R}, a \neq 0 \Rightarrow f(a^{-1}) = f(a)^{-1}$.
- (7) By (4) and (5), if $i \in \mathbb{Z}$, (i < 0) f(i) = -f(-i) = -(-i) = i, (i = 0) f(i) = 0 = i, or (i > 0) f(i) = i $\therefore i \in \mathbb{N}$, so $\forall i \in \mathbb{Z}$, f(i) = i.
- (8) By (6) and (7), if $i \in \mathbb{Z}$, $i \neq 0 \Rightarrow f(1/i) = 1/i$.
- (9) If $q \in \mathbb{Q}$, then $\exists a, b \in \mathbb{Z}$ such that $b \neq 0$, so by (7) and (8), f(q) = f(a/b) = a/b = q, so $\forall q \in \mathbb{Q}$, f(q) = q.
- (10) $\forall a \in \mathbb{R}, a > 0 \Rightarrow \exists r \in \mathbb{R}, r \neq 0 \land r^2 = a$, so by (2), $f(a) = f(r^2) = f(r)^2 > 0$. And by (5), $\forall a \in \mathbb{R}, a < 0 \Rightarrow f(a) = -f(-a) < 0$. Therefore, $\forall a \in \mathbb{R}, a > 0 \Leftrightarrow f(a) > 0$ and $a < 0 \Leftrightarrow f(a) < 0$.
- (11) By (10) and (5), $\forall a, b \in \mathbb{R}, a < b \Leftrightarrow b-a > 0 \Leftrightarrow f(b-a) > 0 \Leftrightarrow f(b)-f(a) > 0 \Leftrightarrow f(a) < f(b).$
- (12) By (9) and (11), $\forall a \in \mathbb{R}, \forall q \in \mathbb{Q}, a > q \Leftrightarrow f(a) > q$, and similarly, $\forall a \in \mathbb{R}, \forall q \in \mathbb{Q}, a < q \Leftrightarrow f(a) < q$.
- (13) $\forall a, b \in \mathbb{R}$, if a < b, then $\exists n \in \mathbb{N}$, n(b-a) > 2 (ex: $n = \lceil \frac{2}{b-a} \rceil$) so that $\exists m \in \mathbb{N}$, na < m < nb (ex: $m = \lfloor na + 2 \rfloor$), and $a < \frac{m}{n} < b$. Therefore, $\forall a, b \in \mathbb{R}$, $\exists q \in \mathbb{Q}$, a < q < b.
- (14) By (9) and (13) $\forall x \in \mathbb{R}, x < f(x) \Rightarrow \exists q \in \mathbb{Q}, x < q < f(x)$, which contradicts with (12). Similarly, $f(x) < x \Rightarrow \exists q \in \mathbb{Q}, f(x) < q < x$, which also contradicts with (12). Therefore, $\forall x \in \mathbb{R}$, there can be only one case, x = f(x), so $\forall x \in \mathbb{R}, x = f(x)$.