POW 2013-17 Repeated numbers

Wooyoung Chin

October 13, 2013

Problem. A real sequence $x_{1}, x_{2}, x_{3}, \cdots$ satisfies the relation $x_{n+2}=x_{n+1}+x_{n}$ for $n=1,2,3, \cdots$. If a number r satisfies $x_{i}=x_{j}=r$ for some i and $j(i \neq j)$, we say that r is a repeated number in this sequence. Prove that there can be more than 2013 repeated numbers in such a sequence, but it is impossible to have infinitely many repeated numbers.

Solution. Let $F_{0}=0, F_{1}=1, F_{2}=1, F_{3}=2, \cdots$ be the sequence of Fibonacci numbers. That is, $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 0$. It is obvious that the sequence strictly increases after the first term $\left(F_{1}\right)$. In particular, the sequence $F_{0}, F_{1}, F_{2}, \ldots$ has only one repeated number. Also, we know that $F_{n+1} / F_{n} \rightarrow(1+\sqrt{5}) / 2$ as $n \rightarrow \infty$.

Consider the following sequence:

$$
F_{4027},-F_{4026}, F_{4025},-F_{4024}, \cdots, F_{3},-F_{2}, F_{1}, F_{0}, F_{1}, \cdots, F_{4026}, F_{4027}, \cdots
$$

In this sequence, each subsequent number is the sum of the previous two. Also, $F_{1}, F_{3}, \cdots, F_{4025}, F_{4027}$ are 2014 distinct repeated numbers.

Now let us show that there is no real sequence $x_{1}, x_{2}, x_{3}, \cdots$ satisfying $x_{n+2}=$ $x_{n+1}+x_{n}$ with infinitely many repeated numbers.

Let $x_{1}, x_{2}, x_{3}, \cdots$ be a real sequence satisfying $x_{n+2}=x_{n+1}+x_{n}$. If $x_{2}=0$, then the sequence $x_{2}, x_{3}, x_{4}, \cdots$ is actually a constant multiple of the Fibonacci sequence, hence having only finitely many repeated numbers.

Let us assume that x_{2} is nonzero. Also without loss of generality, we may assume that x_{2} is positive. If $x_{2}<0$, then just consider the sequence obtained by negating each terms. By induction, it can be easily shown that $x_{n}=F_{n-2} x_{1}+$ $F_{n-1} x_{2}$ for each $n \in \mathbb{N}$ (For convenience, let $F_{-1}=1$).

If $x_{1} / x_{2}>-(1+\sqrt{5}) / 2$, there is $N \in \mathbb{N}$ such that $x_{1} / x_{2}>-F_{n-1} / F_{n-2}$ for all $n \geq N$. That is, $x_{n}=F_{n-2} x_{1}+F_{n-1} x_{2}>0$ for all $n \geq N$. This implies $x_{N+1}<x_{N+2}<x_{N+3}<\cdots$. So x_{1}, \cdots, x_{N} are the only possible repeated numbers.

If $x_{m}(m>N)$ is a repeated number, then $x_{m}=x_{k}$ for some $k \leq N$. Therefore there are only finitely many repeated numbers.

Similarly, if $x_{1} / x_{2}<-(1+\sqrt{5}) / 2$, there is $N \in \mathbb{N}$ such that $x_{n}=F_{n-2} x_{1}+$ $F_{n-1} x_{2}<0$ for all $n \geq N$. This implies $x_{N+1}>x_{N+2}>x_{N+3}>\cdots$, and so there are only finitely many repeated numbers.

Finally let us show that if $x_{1} / x_{2}=-(1+\sqrt{5}) / 2$, there is no repeated number in the sequence at all. Suppose that $x_{1} / x_{2}=-(1+\sqrt{5}) / 2$ and $x_{n}=x_{m}$, where $n<m$. Then $F_{n-2} x_{1}+F_{n-1} x_{2}=F_{m-2} x_{1}+F_{m-1} x_{2}$, and so $\left(F_{n-2}-F_{m-2}\right) x_{1}=$ $\left(F_{m-1}-F_{n-1}\right) x_{2}$. Because either $F_{n-2}-F_{m-2}$ or $F_{m-1}-F_{n-1}$ is nonzero, either x_{1} / x_{2} or x_{2} / x_{1} is ratioinal. However, the number $-(1+\sqrt{5}) / 2$ is irrational. This is a contradiction. Therefore there is no repeated number.

