POW 2013-14 Nilpotent matrix

수리과학과 김호진

Pow 2013-14 Let A, B are $N \times N$ complex matrices satisfying rank(AB - BA) = 1. Prove that $(AB - BA)^2 = 0$.

Proof. Note that the statement is vacuously true when N = 1; set of 1×1 matrices are commutative under matrix multiplication, thus AB - BA = 0 for any $A, B \in M_{1 \times 1}(\mathbb{C})$, so rank $(AB - BA) = 0 \neq 1$. So we assume N > 1.

Let $M \in \mathcal{M}_{N \times N}(\mathbb{C})$ be a matrix with $\operatorname{tr}(M) = 0$ and $\operatorname{rank}(M) = 1$. (Such matrices exist when N > 1.) Column space of M has dimension 1, *i.e.* there exists a nonzero (column) vector $\mathbf{v} \in \mathbb{C}^N$ such that, for any vector $\mathbf{x} \in \mathbb{C}^N$ there exist $k \in \mathbb{C}$ wich satisfies $M\mathbf{x} = k\mathbf{v}$. Let $\mathbf{v} = (v_1, \cdots, v_N)^T$ for $v_i \in \mathbb{C}$.

Let $M\mathbf{e}_1 = k_1\mathbf{v}, \dots, M\mathbf{e}_N = k_N\mathbf{v}. \ (k_i \in \mathbb{C}.)$ Note that $\operatorname{tr}(M) = \sum_{i=1}^N v_i k_k$. We have

$$M^{2}\mathbf{e}_{j} = M(k_{j}\mathbf{v}) = k_{j}M\sum_{i=1}^{N} v_{i}\mathbf{e}_{i}$$
$$= k_{j}\sum_{i=1}^{N} v_{i}M\mathbf{e}_{i} = k_{j}\left(\sum_{i=1}^{N} v_{i}k_{i}\right)\mathbf{v} = k_{j}\operatorname{tr}(M)\mathbf{v} = 0$$

for $j = 1, \dots, N$, *i.e.* $M^2 = O$ a zero matrix. Consequently, If M is rank 1 matrix with zero trace, then $M^2 = O$.

In particular, since $\operatorname{tr}(AB-BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = 0$, $(AB-BA)^2 = O$. $(\operatorname{tr}(AB) = \operatorname{tr}(BA)$ is well know fact, and is immediate from the definition of the matrix multiplication.)