POW 2013-14

Nilpotent matrix

수리과학과 김호진

Pow 2013-14 Let A, B are $N \times N$ complex matrices satisfying $\operatorname{rank}(A B-$ $B A)=1$. Prove that $(A B-B A)^{2}=0$.

Proof. Note that the statement is vacuously true when $N=1$; set of 1×1 matrices are commutative under matrix multiplication, thus $A B-B A=0$ for any $A, B \in \mathrm{M}_{1 \times 1}(\mathbb{C})$, so $\operatorname{rank}(A B-B A)=0 \neq 1$. So we assume $N>1$.

Let $M \in \mathrm{M}_{N \times N}(\mathbb{C})$ be a matrix with $\operatorname{tr}(M)=0$ and $\operatorname{rank}(M)=1$. (Such matrices exist when $N>1$.) Column space of M has dimension 1, i.e. there exists a nonzero (column) vector $\mathbf{v} \in \mathbb{C}^{N}$ such that, for any vector $\mathbf{x} \in \mathbb{C}^{N}$ there exist $k \in \mathbb{C}$ wich satisfies $M \mathbf{x}=k \mathbf{v}$. Let $\mathbf{v}=\left(v_{1}, \cdots, v_{N}\right)^{T}$ for $v_{i} \in \mathbb{C}$.
Let $M \mathbf{e}_{1}=k_{1} \mathbf{v}, \cdots, M \mathbf{e}_{N}=k_{N} \mathbf{v} \cdot\left(k_{i} \in \mathbb{C}\right.$.) Note that $\operatorname{tr}(M)=\sum_{i=1}^{N} v_{i} k_{k}$. We have

$$
\begin{aligned}
M^{2} \mathbf{e}_{j} & =M\left(k_{j} \mathbf{v}\right)=k_{j} M \sum_{i=1}^{N} v_{i} \mathbf{e}_{i} \\
& =k_{j} \sum_{i=1}^{N} v_{i} M \mathbf{e}_{i}=k_{j}\left(\sum_{i=1}^{N} v_{i} k_{i}\right) \mathbf{v}=k_{j} \operatorname{tr}(M) \mathbf{v}=0
\end{aligned}
$$

for $j=1, \cdots, N$, i.e. $M^{2}=O$ a zero matrix. Consquently, If M is rank 1 matrix with zero trace, then $M^{2}=O$.

In particular, since $\operatorname{tr}(A B-B A)=\operatorname{tr}(A B)-\operatorname{tr}(B A)=0,(A B-B A)^{2}=O$. $(\operatorname{tr}(A B)=\operatorname{tr}(B A)$ is well know fact, and is immediate from the definition of the matrix multiplication.)

