POW 2013-13 Functional equation

전산학과 09 학번 강동엽

Let $h(x)=x^{2}+\frac{x}{3}+\frac{1}{9}$. Then h has following properties :
Properties.
(i) $h(x)>0$ for all $x \in \mathbb{R}$.
(ii) $h(x) \geq x$ for all $x \in \mathbb{R}$. Moreover, $h(x)=x$ has the only solution at $x=1 / 3$.
(iii) $h \chi_{\left[-\frac{1}{6}, \infty\right)}$ defined on $[-1 / 6, \infty)$ has an inverse function.

Proof.

(i) $h(x)=(x+1 / 6)^{2}+(1 / 9-1 / 36)>0$ for all $x \in \mathbb{R}$.
(ii) $h(x)-x=\left(x-\frac{1}{3}\right)^{2} \geq 0$ for all $x \in \mathbb{R}$.
(iii) An equality $h(x)=(x+1 / 6)^{2}+(1 / 9-1 / 36)$ implies that h is monotone-increasing on $[-1 / 6$, inf).

Our goal : f is a constant function.
For any $x \in \mathbb{R}, f(x)=f(h(x))$. Since $h(x)>0$ for all $x \in \mathbb{R}$, it is enough to show f is constant for $x>0$.

Case 1. $0<x \leq 1 / 3$
Since $h(x)-h(1 / 3)=h(x)-1 / 3=(x-1 / 3)(x+2 / 3), h(x) \leq 1 / 3$ for $0<x \leq 1 / 3$. For any $0<x \leq 1 / 3$, if we let $a_{0}=x$ and $a_{n+1}=h\left(a_{n}\right)$ for $n \geq 0$, the sequence $\left\{a_{n}\right\}$ is (monotone) increasing (since $h(x) \geq x$) and bounded above. (i.e. $a_{n} \leq 1 / 3$ for all $n \geq 0$) Hence the limit $\alpha \in \mathbb{R}$ exists.
Because h is continuous, we get the equation $\alpha=\lim _{n \rightarrow \infty} a_{n+1}=h\left(\lim _{n \rightarrow \infty} a_{n}\right)=$ $h(\alpha)$, so $\alpha=1 / 3$. Since $f(x)=f\left(a_{0}\right)=f\left(a_{n}\right)$ for all $n \geq 0$ and f is continuous, $f(x)=f\left(a_{0}\right)=f(\alpha)=f(1 / 3)$.

Case 2. $1 / 3<x$
Note that h has an inverse on $[-1 / 6, \infty)$. Let $a_{0}=x$ and $a_{n+1}=h^{-1}\left(a_{n}\right)$ for $n \geq 0$. Similarly $f\left(a_{0}\right)=f\left(a_{n}\right)$ for all $n \geq 0$. Since $h(x) \geq x$, we get $a_{n+1}<a_{n}$, hence a_{n} is (monotone) decreasing. Because $h(x) \geq 1 / 3$ for $x \geq 1 / 3, h^{-1}(x) \geq 1 / 3$ for $x \geq 1 / 3$, so $a_{n} \geq 1 / 3$ by a simple induction (on n). So the sequence has a limit $\beta \in \mathbb{R}$, which satisfies $\beta=\lim _{n \rightarrow \infty} a_{n+1}=h\left(\lim _{n \rightarrow \infty} a_{n}\right)=h(\beta)$. Thus $\beta=1 / 3$. By the continuity of f, we get $f(x)=f\left(a_{0}\right)=f(\beta)=f(1 / 3)$.

