POW 2013-13 Functional equation

전산학과 09학번 강동엽

Let $h(x) = x^2 + \frac{x}{3} + \frac{1}{9}$. Then h has following properties :

Properties.

(i) h(x) > 0 for all x ∈ ℝ.
(ii) h(x) ≥ x for all x ∈ ℝ. Moreover, h(x) = x has the only solution at x = 1/3.
(iii) hχ_{[-1/2,∞)} defined on [-1/6,∞) has an inverse function.

Proof.

(i) h(x) = (x + 1/6)² + (1/9 - 1/36) > 0 for all x ∈ ℝ.
(ii) h(x) - x = (x - ¹/₃)² ≥ 0 for all x ∈ ℝ.
(iii) An equality h(x) = (x + 1/6)² + (1/9 - 1/36) implies that h is monotone-increasing on [-1/6, inf).

Our goal : f is a constant function.

For any $x \in \mathbb{R}$, f(x) = f(h(x)). Since h(x) > 0 for all $x \in \mathbb{R}$, it is enough to show f is constant for x > 0.

Case 1. $0 < x \le 1/3$

Since h(x) - h(1/3) = h(x) - 1/3 = (x - 1/3)(x + 2/3), $h(x) \le 1/3$ for $0 < x \le 1/3$. For any $0 < x \le 1/3$, if we let $a_0 = x$ and $a_{n+1} = h(a_n)$ for $n \ge 0$, the sequence $\{a_n\}$ is (monotone) increasing (since $h(x) \ge x$) and bounded above. (i.e. $a_n \le 1/3$ for all $n \ge 0$) Hence the limit $\alpha \in \mathbb{R}$ exists.

Because h is continuous, we get the equation $\alpha = \lim_{n \to \infty} a_{n+1} = h(\lim_{n \to \infty} a_n) = h(\alpha)$, so $\alpha = 1/3$. Since $f(x) = f(a_0) = f(a_n)$ for all $n \ge 0$ and f is continuous, $f(x) = f(a_0) = f(\alpha) = f(1/3)$.

Case 2. 1/3 < x

Note that h has an inverse on $[-1/6, \infty)$. Let $a_0 = x$ and $a_{n+1} = h^{-1}(a_n)$ for $n \ge 0$. Similarly $f(a_0) = f(a_n)$ for all $n \ge 0$. Since $h(x) \ge x$, we get $a_{n+1} < a_n$, hence a_n is (monotone) decreasing. Because $h(x) \ge 1/3$ for $x \ge 1/3$, $h^{-1}(x) \ge 1/3$ for $x \ge 1/3$, so $a_n \ge 1/3$ by a simple induction (on n). So the sequence has a limit $\beta \in \mathbb{R}$, which satisfies $\beta = \lim_{n \to \infty} a_{n+1} = h(\lim_{n \to \infty} a_n) = h(\beta)$. Thus $\beta = 1/3$. By the continuity of f, we get $f(x) = f(a_0) = f(\beta) = f(1/3)$.