Proof. For each $x \in A=\left\{\left(a_{1}, \cdots, a_{n}\right): a_{i}= \pm 1(i=1, \cdots, n)\right\}$, let N_{x} be the set of all points in A that differ from x in exactly one coordinate. It is obvious that $\left|N_{x}\right|=n$ for any $x \in A$.

Now define $B:=\left\{(x, y): x \in X, y \in N_{x} \subset A\right\}$. Then $|B|=\sum_{x \in X}\left|N_{x}\right|=n|X|>2^{n+1}$. Since $|A|=2^{n}$, second coordinate of an element in B must be one of 2^{n} points in A. Then by pigeonhole principle, there is a point $y \in A$ such that there exist x_{1}, x_{2}, x_{3} satisfying $y \in N_{x_{i}}$ for $i=1,2,3$. These are three points in X that differ from y in exactly one coordinate. Thus these points differ from each other in exactly two coordinate, which means that these points form an equilateral triangle.

