Proof. From definition, $S_p = \{n : x^n - 1 \equiv (x^p - x + 1)f(x) \mod p \text{ for some } f(x)\}.$

Claim. $2\frac{p^p-1}{p-1} = 2(p^{p-1} + \dots + 1), p^p - 1 = (p-1)(p^{p-1} + \dots + 1) \in S_p$

Proof. Let α be any root of $x^p - x + 1 = 0$ over \mathbb{F}_p . Observe that $\alpha^p = \alpha - 1$. Then $(\alpha + 1)^p - (\alpha + 1) + 1 = \alpha^p + 1^p - \alpha = (\alpha - 1) + 1 - \alpha = 0$, which means that $\alpha + 1$ is also a root of the polynomial $x^p - x + 1$. Similarly, $\alpha + a$ is a root for any $a \in \mathbb{F}_p$. Because the polynomial has p roots and $\alpha + a$'s are pairwise distinct for $a \in \mathbb{F}_p$, we get

$$x^p - x + 1 \equiv \prod_{a=0}^{p-1} (x - \alpha - a) \mod p$$

Let $m = p^{p-1} + \cdots + 1$. To show the claim, it is enough to show that $x^{2m} - 1$ and $x^{(p-1)m} - 1$ are divided by $x^p - x + 1$ over \mathbb{F}_p , in other words, any root α of $x^p - x + 1$, $\alpha^{2m} = \alpha^{(p-1)m} = 1$ over \mathbb{F}_p .

From the factorization of $x^p - x + 1$, we can observe that $\prod_{a=0}^{p-1}(-\alpha - a) = 1$. Also, since $\alpha^p = \alpha - 1$,

$$\alpha^{p^{k}} = (\alpha^{p})^{p^{k-1}} = (\alpha - 1)^{p^{k-1}} = \alpha^{p^{k-1}} + (-1)^{p} = \dots = \alpha^{p^{0}} + k \times (-1)^{p} = \alpha + k(-1)^{p}$$

for every $k \in \mathbb{N}$. Using these equalities, we get

$$\begin{aligned} \alpha^{2m} &= \left(\alpha^{\sum_{k=0}^{p-1} p^{k}}\right)^{2} = \left(\prod_{k=0}^{p-1} \alpha^{p^{k}}\right)^{2} \\ &= \prod_{k=0}^{p-1} (\alpha + k(-1)^{p})^{2} = \prod_{k=0}^{p-1} (\alpha + k)^{2} = \prod_{k=0}^{p-1} (-\alpha - k)^{2} = \left(\prod_{k=0}^{p-1} (-\alpha - k)\right)^{2} = 1 \\ \alpha^{(p-1)m} &= \left(\alpha^{\sum_{k=0}^{p-1} p^{k}}\right)^{p-1} = \left(\prod_{k=0}^{p-1} \alpha^{p^{k}}\right)^{p-1} \\ &= \left(\prod_{k=0}^{p-1} (\alpha + k(-1)^{p})\right)^{p-1} = \left(\prod_{k=0}^{p-1} (\alpha + k)\right)^{p-1} \\ &= \left((-1)^{p} \prod_{k=0}^{p-1} (-\alpha - k)\right)^{p-1} = (-1)^{p(p-1)} = 1 \end{aligned}$$

over \mathbb{F}_p , which proves the claim.

When p > 3, $2\frac{p^p-1}{p-1} < p^p - 1$. Thus $p^p - 1$ is not a minimum of S_p for p > 3. We want to prove that $p^p - 1$ is the minimum of S_p when p = 2, 3. Suppose that $m = \min S_p$. Note that when $s, t \in S_p, x^s - 1$ and $x^t - 1(s > t)$ are both divided by $x^p - x + 1$ over \mathbb{F}_p , $x^s - x^t = x^t(x^{s-t} - 1)$ is divided, thus $x^{s-t} - 1$ is divided by $x^p - x + 1$. Then by using division algorithm, $x^{\gcd(s,t)} - 1$ is divided by $x^p - x + 1$ over \mathbb{F}_p , so $\gcd(s,t) \in S_p$. Therefore since $\gcd(m, p^p - 1) \in S_p$ and $\gcd(m, p^p - 1) \leq m, m$ is a divisor of $p^p - 1$. From the fact that $x^p - x + 1$ divides $x^m - 1, p \leq m$.

When $p = 2, p^p - 1 = 3$. Since *m* divides 3 and $m \ge 2, m = 3 = p^p - 1$.

When p = 3, $p^p - 1 = 26$. Since *m* divides 26 and $m \ge 3$, m = 13 or 26. Since $x^{13} + 1 = (x^3 - x + 1)(x^{10} + x^8 - x^7 + x^6 + x^5 - x^4 + x^2 + x + 1)$ over \mathbb{F}_3 and $x^{13} + 1 - (x^{13} - 1) \neq 0$ mod 3, $m \neq 13$. Thus $m = 26 = p^p - 1$.

Therefore, primes p for which $p^p - 1$ is the minimum of S_p are 2 and 3.