Proof. From definition, $S_{p}=\left\{n: x^{n}-1 \equiv\left(x^{p}-x+1\right) f(x) \bmod p \quad\right.$ for some $\left.f(x)\right\}$.
Claim. $\quad 2 \frac{p^{p}-1}{p-1}=2\left(p^{p-1}+\cdots+1\right), p^{p}-1=(p-1)\left(p^{p-1}+\cdots+1\right) \in S_{p}$
Proof. Let α be any root of $x^{p}-x+1=0$ over \mathbb{F}_{p}. Observe that $\alpha^{p}=\alpha-1$. Then $(\alpha+1)^{p}-(\alpha+1)+1=\alpha^{p}+1^{p}-\alpha=(\alpha-1)+1-\alpha=0$, which means that $\alpha+1$ is also a root of the polynomial $x^{p}-x+1$. Similarly, $\alpha+a$ is a root for any $a \in \mathbb{F}_{p}$. Because the polynomial has p roots and $\alpha+a$'s are pairwise distinct for $a \in \mathbb{F}_{p}$, we get

$$
x^{p}-x+1 \equiv \prod_{a=0}^{p-1}(x-\alpha-a) \quad \bmod p
$$

Let $m=p^{p-1}+\cdots+1$. To show the claim, it is enough to show that $x^{2 m}-1$ and $x^{(p-1) m}-1$ are divided by $x^{p}-x+1$ over \mathbb{F}_{p}, in other words, any root α of $x^{p}-x+1$, $\alpha^{2 m}=\alpha^{(p-1) m}=1$ over \mathbb{F}_{p}.
From the factorization of $x^{p}-x+1$, we can observe that $\prod_{a=0}^{p-1}(-\alpha-a)=1$. Also, since $\alpha^{p}=\alpha-1$,

$$
\alpha^{p^{k}}=\left(\alpha^{p}\right)^{p^{k-1}}=(\alpha-1)^{p^{k-1}}=\alpha^{p^{k-1}}+(-1)^{p}=\cdots=\alpha^{p^{0}}+k \times(-1)^{p}=\alpha+k(-1)^{p}
$$

for every $k \in \mathbb{N}$. Using these equalities, we get

$$
\begin{aligned}
\alpha^{2 m} & =\left(\alpha^{\sum_{k=0}^{p-1} p^{k}}\right)^{2}=\left(\prod_{k=0}^{p-1} \alpha^{p^{k}}\right)^{2} \\
& =\prod_{k=0}^{p-1}\left(\alpha+k(-1)^{p}\right)^{2}=\prod_{k=0}^{p-1}(\alpha+k)^{2}=\prod_{k=0}^{p-1}(-\alpha-k)^{2}=\left(\prod_{k=0}^{p-1}(-\alpha-k)\right)^{2}=1 \\
\alpha^{(p-1) m} & =\left(\alpha^{\sum_{k=0}^{p-1} p^{k}}\right)^{p-1}=\left(\prod_{k=0}^{p-1} \alpha^{p^{k}}\right)^{p-1} \\
& =\left(\prod_{k=0}^{p-1}\left(\alpha+k(-1)^{p}\right)\right)^{p-1}=\left(\prod_{k=0}^{p-1}(\alpha+k)\right)^{p-1} \\
& =\left((-1)^{p} \prod_{k=0}^{p-1}(-\alpha-k)\right)^{p-1}=(-1)^{p(p-1)}=1
\end{aligned}
$$

over \mathbb{F}_{p}, which proves the claim.
When $p>3,2 \frac{p^{p}-1}{p-1}<p^{p}-1$. Thus $p^{p}-1$ is not a minimum of S_{p} for $p>3$. We want to prove that $p^{p}-1$ is the minimum of S_{p} when $p=2,3$. Suppose that $m=\min S_{p}$. Note that when $s, t \in S_{p}, x^{s}-1$ and $x^{t}-1(s>t)$ are both divided by $x^{p}-x+1$ over \mathbb{F}_{p}, $x^{s}-x^{t}=x^{t}\left(x^{s-t}-1\right)$ is divided, thus $x^{s-t}-1$ is divided by $x^{p}-x+1$. Then by using division algorithm, $x^{\operatorname{gcd}(s, t)}-1$ is divided by $x^{p}-x+1$ over \mathbb{F}_{p}, so $\operatorname{gcd}(s, t) \in S_{p}$. Therefore since $\operatorname{gcd}\left(m, p^{p}-1\right) \in S_{p}$ and $\operatorname{gcd}\left(m, p^{p}-1\right) \leq m, m$ is a divisor of $p^{p}-1$. From the fact that $x^{p}-x+1$ divides $x^{m}-1, p \leq m$.
When $p=2, p^{p}-1=3$. Since m divides 3 and $m \geq 2, m=3=p^{p}-1$.

When $p=3, p^{p}-1=26$. Since m divides 26 and $m \geq 3, m=13$ or 26 . Since $x^{13}+1=$ $\left(x^{3}-x+1\right)\left(x^{10}+x^{8}-x^{7}+x^{6}+x^{5}-x^{4}+x^{2}+x+1\right)$ over \mathbb{F}_{3} and $x^{13}+1-\left(x^{13}-1\right) \not \equiv 0$ $\bmod 3, m \neq 13$. Thus $m=26=p^{p}-1$.
Therefore, primes p for which $p^{p}-1$ is the minimum of S_{p} are 2 and 3 .

