POW 2013-05 20080286 Joonhyun La

1. Problem

Consider the unit sphere in \mathbb{R}^n . Find the maximum number of points on the sphere such that the (Euclidean) distance between any two of these points is larger than $\sqrt{2}$.

2. Solution

For $n \ge 1$, let S_{n-1} be (n-1)-dimensional unit sphere in \mathbb{R}^n . That is, $S_{n-1} = \{x \in \mathbb{R}^n | |x| = 1\}.$

If A is a set of points on S_{n-1} such that the (Euclidean) distance between any two of these points is larger than $\sqrt{2}$, then A should be finite: since S_{n-1} is compact, if A is infinite, it should have arbitrarily close two points, and clearly they cannot have distance larger than $\sqrt{2}$.

Then defining M_n to be the maximum number of points on S_{n-1} such that distance between any of two of these points is larger than $\sqrt{2}$ makes sense and M_n should also be finite.

We begin with 2 simple lemmas. The first lemma states that distance between two points X, Y on the sphere is larger than $\sqrt{2}$ if and only if the angle $\angle XOY$ is obtuse, where O is the origin.

Lemma 1. Let $x, y \in S_{n-1}$. Then $d(x, y) > \sqrt{2}$ if and only if $x \cdot y < 0$. Proof)

 $d(x,y) > \sqrt{2}$ if and only if $d(x,y)^2 > 2$. But $d(x,y)^2 = |x-y|^2 = |x|^2 + |y|^2 - 2x \cdot y = 2 - 2x \cdot y$. Therefore, $d(x,y)^2 > 2$ if and only if $x \cdot y < 0$.

The next lemma states that if three points X, Y, Z on the sphere satisfy $\angle XOY, \angle XOZ, \angle YOZ$ are all obtuse, then if we project Y, Z to the hyperplane plane passing through O and orthogonal to OX and letting the obtained points Y', Z', then $\angle Y'OZ'$ is again obtuse.

Lemma 2. Let $x, y, z \in S_{n-1}$ with $x \cdot y < 0, y \cdot z < 0, z \cdot x < 0$. Then $\operatorname{proj}_{x^{\perp}} y \cdot \operatorname{proj}_{x^{\perp}} z < 0$.

Note that the hypotheses of the above lemma implies that any two of them cannot be antipodes, i. e. x = -y or y = -z or z = -x cannot be possible.

Proof of Lemma 2)

Note that $y = \operatorname{proj}_{x^{\perp}} y + \operatorname{proj}_{x} y = \operatorname{proj}_{x^{\perp}} y + (x \cdot y)x$ and similarly $z = \operatorname{proj}_{x^{\perp}} z + \operatorname{proj}_{x} z = \operatorname{proj}_{x^{\perp}} z + (x \cdot z)x$.

Then $\operatorname{proj}_{x^{\perp}} y \cdot \operatorname{proj}_{x^{\perp}} z = (y - (x \cdot y)x) \cdot (z - (x \cdot z)x)$ = $y \cdot z - (x \cdot z)(x \cdot y) < 0$, as desired. \Box Now we go on to the main result. First we note that For n = 1 $M_n = 2$. Now let n > 1. One obvious note is that $M_n \ge 1$ for all $n \ge 1$.

Let A_n be a set of points in S_{n-1} such that distance between any points is larger than sqrt2, and having M_n points.

Then since $|A_n| \ge 1$ for $n \ge 1$, we can choose x from A_n .

Then by the virtue of Lemma 2, $B = \{\frac{\operatorname{proj}_{x\perp} y}{|\operatorname{proj}_{x\perp} y|} | y \in A_n - \{x\}\}$ is a set of points on the unit sphere $S_{n-1} \cap x^{\perp} = S_{n-2}$ (where x^{\perp} is identified with \mathbb{R}^{n-1}) such that distance between any of two of these points is larger than $\sqrt{2}$.

Then $M_n = |B| + 1 \le M_{n-1} + 1$.

On the other hand, we can identify \mathbb{R}^n with *n*-dimensional subspace of \mathbb{R}^{n+1} by identifying points x of \mathbb{R}^n with $(x,0) \in \mathbb{R}^{n+1}$. Then $S_{n-1} = S_n \cap e_{n+1}^{\perp} \in S_n$.

Now since A_n is a finite set, we can choose sufficiently small $\epsilon > 0$ such that $\{(\sqrt{1-\epsilon^2}x, -\epsilon)|x \in A_n\} \subseteq S_n$ and $d((\sqrt{1-\epsilon^2}x, -\epsilon), (\sqrt{1-\epsilon^2}y, -\epsilon)) = \sqrt{(1-\epsilon^2)d(x,y)^2 + \epsilon^2} > \sqrt{2}.$

Then $\{(\sqrt{1-\epsilon^2}x,-\epsilon)|x \in A_n\} \cup \{e_{n+1}\} \subseteq S_n$ and distance between any two of these points is larger than $\sqrt{2}$. Therefore, $M_n + 1 = |A_n| + 1 \leq M_{n+1}$.

Therefore, $M_{n-1} + 1 = M_n$ for $n \ge 1$ and $M_1 = 2$ gives $M_n = n + 1$ for all $n \ge 1$.