POW 2013-05 20080286 Joonhyun La

1. Problem

Consider the unit sphere in R^{n}. Find the maximum number of points on the sphere such that the (Euclidean) distance between any two of these points is larger than $\sqrt{2}$.
2. Solution

For $n \geq 1$, let S_{n-1} be ($n-1$)-dimensional unit sphere in R^{n}. That is, $S_{n-1}=\left\{x \in \mathrm{R}^{n}| | x \mid=1\right\}$.

If A is a set of points on S_{n-1} such that the (Euclidean) distance between any two of these points is larger than $\sqrt{2}$, then A should be finite: since S_{n-1} is compact, if A is infinite, it should have arbitrarily close two points, and clearly they cannot have distance larger than $\sqrt{2}$.

Then defining M_{n} to be the maximum number of points on S_{n-1} such that distance between any of two of these points is larger than $\sqrt{2}$ makes sense and M_{n} should also be finite.

We begin with 2 simple lemmas. The first lemma states that distance between two points X, Y on the sphere is larger than $\sqrt{2}$ if and only if the angle $\angle X O Y$ is obtuse, where O is the origin.

Lemma 1. Let $x, y \in S_{n-1}$. Then $d(x, y)>\sqrt{2}$ if and only if $x \cdot y<0$.
Proof)
$d(x, y)>\sqrt{2}$ if and only if $d(x, y)^{2}>2$. But $d(x, y)^{2}=|x-y|^{2}=$ $|x|^{2}+|y|^{2}-2 x \cdot y=2-2 x \cdot y$. Therefore, $d(x, y)^{2}>2$ if and only if $x \cdot y<0$.

The next lemma states that if three points X, Y, Z on the sphere satisfy $\angle X O Y, \angle X O Z, \angle Y O Z$ are all obtuse, then if we project Y, Z to the hyperplane plane passing through O and orthogonal to $O X$ and letting the obtained points Y^{\prime}, Z^{\prime}, then $\angle Y^{\prime} O Z^{\prime}$ is again obtuse.

Lemma 2. Let $x, y, z \in S_{n-1}$ with $x \cdot y<0, y \cdot z<0, z \cdot x<0$. Then $\operatorname{proj}_{x^{\perp}} y \cdot \operatorname{proj}_{x^{\perp}} z<0$.

Note that the hypotheses of the above lemma implies that any two of them cannot be antipodes, i. e. $x=-y$ or $y=-z$ or $z=-x$ cannot be possible.

Proof of Lemma 2)
Note that $y=\operatorname{proj}_{x^{\perp}} y+\operatorname{proj}_{x} y=\operatorname{proj}_{x^{\perp}} y+(x \cdot y) x$ and similarly $z=$ $\operatorname{proj}_{x^{\perp}} z+\operatorname{proj}_{x} z=\operatorname{proj}_{x^{\perp}} z+(x \cdot z) x$.

Then $\operatorname{proj}_{x^{\perp}} y \cdot \operatorname{proj}_{x^{\perp}} z=(y-(x \cdot y) x) \cdot(z-(x \cdot z) x)$
$=y \cdot z-(x \cdot z)(x \cdot y)<0$, as desired.

Now we go on to the main result. First we note that For $n=1 M_{n}=2$. Now let $n>1$. One obvious note is that $M_{n} \geq 1$ for all $n \geq 1$.

Let A_{n} be a set of points in S_{n-1} such that distance between any points is larger than sqrt2, and having M_{n} points.

Then since $\left|A_{n}\right| \geq 1$ for $n \geq 1$, we can choose x from A_{n}.
Then by the virtue of Lemma 2, $B=\left\{\left.\frac{\operatorname{proj}_{x} \perp y}{\left|\operatorname{proj}_{x} \perp y\right|} \right\rvert\, y \in A_{n}-\{x\}\right\}$ is a set of points on the unit sphere $S_{n-1} \cap x^{\perp}=S_{n-2}$ (where x^{\perp} is identified with R^{n-1}) such that distance between any of two of these points is larger than $\sqrt{2}$.

Then $M_{n}=|B|+1 \leq M_{n-1}+1$.
On the other hand, we can identify R^{n} with n-dimensional subspace of R^{n+1} by identifying points x of R^{n} with $(x, 0) \in \mathrm{R}^{n+1}$. Then $S_{n-1}=S_{n} \cap$ $e_{n+1}^{\perp} \in S_{n}$.

Now since A_{n} is a finite set, we can choose sufficiently small $\epsilon>0$ such that $\left\{\left(\sqrt{1-\epsilon^{2}} x,-\epsilon\right) \mid x \in A_{n}\right\} \subseteq S_{n}$ and $d\left(\left(\sqrt{1-\epsilon^{2}} x,-\epsilon\right),\left(\sqrt{1-\epsilon^{2}} y,-\epsilon\right)\right)=$ $\sqrt{\left(1-\epsilon^{2}\right) d(x, y)^{2}+\epsilon^{2}}>\sqrt{2}$.

Then $\left\{\left(\sqrt{1-\epsilon^{2}} x,-\epsilon\right) \mid x \in A_{n}\right\} \cup\left\{e_{n+1}\right\} \subseteq S_{n}$ and distance between any two of these points is larger than $\sqrt{2}$. Therefore, $M_{n}+1=\left|A_{n}\right|+1 \leq M_{n+1}$.

Therefore, $M_{n-1}+1=M_{n}$ for $n \geq 1$ and $M_{1}=2$ gives $M_{n}=n+1$ for all $n \geq 1$.

