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1. Problem
Consider the unit sphere in Rn. Find the maximum number of points

on the sphere such that the (Euclidean) distance between any two of these
points is larger than

√
2.

2. Solution
For n ≥ 1, let Sn−1 be (n − 1)-dimensional unit sphere in Rn. That is,

Sn−1 = {x ∈ Rn||x| = 1}.
If A is a set of points on Sn−1 such that the (Euclidean) distance between

any two of these points is larger than
√

2, then A should be finite: since Sn−1

is compact, if A is infinite, it should have arbitrarily close two points, and
clearly they cannot have distance larger than

√
2.

Then defining Mn to be the maximum number of points on Sn−1 such
that distance between any of two of these points is larger than

√
2 makes

sense and Mn should also be finite.
We begin with 2 simple lemmas. The first lemma states that distance

between two points X, Y on the sphere is larger than
√

2 if and only if the
angle ∠XOY is obtuse, where O is the origin.

Lemma 1. Let x, y ∈ Sn−1. Then d(x, y) >
√

2 if and only if x · y < 0.
Proof)
d(x, y) >

√
2 if and only if d(x, y)2 > 2. But d(x, y)2 = |x − y|2 =

|x|2 + |y|2 − 2x · y = 2− 2x · y. Therefore, d(x, y)2 > 2 if and only if x · y < 0.
�

The next lemma states that if three points X, Y, Z on the sphere sat-
isfy ∠XOY, ∠XOZ, ∠Y OZ are all obtuse, then if we project Y, Z to the
hyperplane plane passing through O and orthogonal to OX and letting the
obtained points Y ′, Z ′, then ∠Y ′OZ ′ is again obtuse.

Lemma 2. Let x, y, z ∈ Sn−1 with x · y < 0, y · z < 0, z · x < 0. Then
proj

x⊥y · proj
x⊥z < 0.

Note that the hypotheses of the above lemma implies that any two of
them cannot be antipodes, i. e. x = −y or y = −z or z = −x cannot be
possible.

Proof of Lemma 2)
Note that y = proj

x⊥y + proj
x
y = proj

x⊥y + (x · y)x and similarly z =
proj

x⊥z + proj
x
z = proj

x⊥z + (x · z)x.
Then proj

x⊥y · proj
x⊥z = (y − (x · y)x) · (z − (x · z)x)

= y · z − (x · z)(x · y) < 0, as desired. �



Now we go on to the main result. First we note that For n = 1 Mn = 2.
Now let n > 1. One obvious note is that Mn ≥ 1 for all n ≥ 1.

Let An be a set of points in Sn−1 such that distance between any points
is larger than sqrt2, and having Mn points.

Then since |An| ≥ 1 for n ≥ 1, we can choose x from An.

Then by the virtue of Lemma 2, B = { proj
x
⊥y

|proj
x
⊥y|

|y ∈ An − {x}} is a set

of points on the unit sphere Sn−1 ∩ x⊥ = Sn−2 (where x⊥ is identified with
Rn−1) such that distance between any of two of these points is larger than√

2.
Then Mn = |B| + 1 ≤ Mn−1 + 1.
On the other hand, we can identify Rn with n-dimensional subspace of

Rn+1 by identifying points x of Rn with (x, 0) ∈ Rn+1. Then Sn−1 = Sn ∩
e⊥

n+1 ∈ Sn.
Now since An is a finite set, we can choose sufficiently small ǫ > 0 such

that {(
√

1 − ǫ2x,−ǫ)|x ∈ An} ⊆ Sn and d((
√

1 − ǫ2x,−ǫ), (
√

1 − ǫ2y,−ǫ)) =
√

(1 − ǫ2)d(x, y)2 + ǫ2 >
√

2.
Then {(

√
1 − ǫ2x,−ǫ)|x ∈ An} ∪ {en+1} ⊆ Sn and distance between any

two of these points is larger than
√

2. Therefore, Mn +1 = |An|+1 ≤ Mn+1.
Therefore, Mn−1 + 1 = Mn for n ≥ 1 and M1 = 2 gives Mn = n + 1 for

all n ≥ 1.


