1. Problem

Prove that F has at least 80 zeros in the interval $(0,2013) . \quad F(x)=\sum_{n=1}^{1000} \cos \left(n^{1.5} x\right)$.

2. Lemma

For given continuous and differentiable function $F(x)$, define $G(x)=\int_{0}^{x} F(t) d t$.
(i) $G(x)$ is also a continuous and differentiable function.
(ii) If $G(x)$ has at least m zeros, then $F(x)$ has at least $m-1$ zeros each in the interval of consecutive two zeros of $G(x)$.

3. Proof of Lemma

(i) Trivial.
(ii) Suppose that m zeros of $G(x)$ are $x_{1}, x_{2}, \cdots, x_{m}$ with $x_{1}<x_{2}<\cdots<x_{m}$.

Since $F(x)$ is continuous and differentiable function, we can apply the 'Mean Value Theorem'. Then, there exists at least one zero of $F(x)$ in the interval $\left(x_{i}, x_{i+1}\right)$.
Then, $F(x)$ has at least $m-1$ zeros $y_{1}, y_{2}, \cdots, y_{m-1}$ with $x_{1}<y_{1}<x_{2}<y_{2}<\cdots y_{m-1}<x_{m}$.

4. Proof of Problem

Define $G(x)=\int_{0}^{x} F(t) d t=\sum_{n=1}^{1000} n^{-1.5} \sin \left(n^{1.5} x\right)$.
Define $H(x)=\int_{0}^{x} G(t) d t-\sum_{n=1}^{1000} n^{-3} \cos \left(n^{1.5} 0\right)=-\sum_{n=1}^{1000} n^{-3} \cos \left(n^{1.5} x\right)$.
($\sum_{n=1}^{1000} n^{-3} \cos \left(n^{1.5} 0\right)$ is just a constant term.)
$H(x)=-\sum_{n=1}^{1000} n^{-3} \cos \left(n^{1.5} x\right)=-\cos x-\sum_{n=2}^{1000} n^{-3} \cos \left(n^{1.5} x\right)$
$\left|\sum_{n=2}^{1000} n^{-3} \cos \left(n^{1.5} x\right)\right| \leq \sum_{n=2}^{1000} n^{-3}<1$
It means that $-\cos x-1<H(x)<-\cos x+1$.
Since $H(2 k \pi)<-\cos (2 k \pi)+1=0, \quad H(2 k \pi+\pi)>-\cos (2 k \pi+\pi)-1=0$, there exist at least one zero of $H(x)$ in the interval $(2 k \pi, 2 k \pi+\pi)$ for $\forall k \in Z$.
$\therefore H(x)$ has at least $\left[\frac{2013}{2 \pi}\right]=320$
Since $F(x), G(x), H(x)$ are all continuous, differentiable, $G(x)$ has at least 319 zeros and $F(x)$ has at least 318 zeros.
\therefore Consequently, $F(x)$ has at least 80 zeros in the interval $(0,2013)$.

