1. Problem

Prove that F has at least 80 zeros in the interval (0,2013). $F(x) = \sum_{n=1}^{1000} \cos(n^{1.5}x)$.

2. Lemma

For given continuous and differentiable function F(x), define $G(x) = \int_0^x F(t) dt$.

(i) G(x) is also a continuous and differentiable function.

(ii) If G(x) has at least m zeros, then F(x) has at least m-1 zeros each in the interval of consecutive two zeros of G(x).

3. Proof of Lemma

(i) Trivial.

(ii) Suppose that m zeros of G(x) are x_1, x_2, \dots, x_m with $x_1 < x_2 < \dots < x_m$.

Since F(x) is continuous and differentiable function, we can apply the 'Mean Value Theorem'. Then, there exists at least one zero of F(x) in the interval (x_i, x_{i+1}) .

Then, F(x) has at least m-1 zeros $y_1, y_2, \cdots, y_{m-1}$ with $x_1 < y_1 < x_2 < y_2 < \cdots y_{m-1} < x_m$.

4. Proof of Problem

$$\begin{array}{ll} \text{Define} & G(x) = \int_{0}^{x} F(t) dt = \sum_{n=1}^{1000} n^{-1.5} \sin\left(n^{1.5}x\right).\\ \text{Define} & H(x) = \int_{0}^{x} G(t) dt - \sum_{n=1}^{1000} n^{-3} \cos\left(n^{1.5}0\right) = -\sum_{n=1}^{1000} n^{-3} \cos\left(n^{1.5}x\right).\\ (\sum_{n=1}^{1000} n^{-3} \cos\left(n^{1.5}0\right) \text{ is just a constant term.})\\ H(x) = -\sum_{n=1}^{1000} n^{-3} \cos\left(n^{1.5}x\right) = -\cos x - \sum_{n=2}^{1000} n^{-3} \cos\left(n^{1.5}x\right)\\ |\sum_{n=2}^{1000} n^{-3} \cos\left(n^{1.5}x\right)| \leq \sum_{n=2}^{1000} n^{-3} < 1 \end{array}$$

It means that $-\cos x - 1 < H(x) < -\cos x + 1$.

Since $H(2k\pi) < -\cos(2k\pi) + 1 = 0$, $H(2k\pi + \pi) > -\cos(2k\pi + \pi) - 1 = 0$, there exist at least one zero of H(x) in the interval $(2k\pi, 2k\pi + \pi)$ for $\forall k \in \mathbb{Z}$.

 $\therefore H(x)$ has at least $[\frac{2013}{2\pi}] = 320$

Since F(x), G(x), H(x) are all continuous, differentiable, G(x) has at least 319 zeros and F(x) has at least 318 zeros.

 \therefore Consequently, F(x) has at least 80 zeros in the interval (0,2013).