POW 2013-02 Functional equation

r allotiollar oquatioli

수리과학과 김호진

- **Pow 2013-02** Let \mathbb{Z}^+ be the set of positive integers. Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ satisfies the following conditions.
 - i) f(f(x)) = 5x
 - ii) If $m \ge n$, then $f(m) \ge f(n)$
 - iii) $f(1) \neq 2$

find f(256).

solution. f(256) = 506. If f(m) = f(n), then f(f(m)) = 5m = f(f(n)) = 5n so m = n. Therefore f is injective. Thus, f is strictly increasing, *i.e.* m > n implies f(m) > f(n). f(1) = 3. One can deduce this by elminating every other possibility. If f(1) = 1, then 5 = f(f(1)) = f(1) = 1, which is contradiction. So $f(1) \neq 1$. And $f(1) \neq 2$ is given. If f(1) = 4, then f(f(1)) = f(4) = 5. Thus f(1) = 4 < f(2) < f(4) = 5. But there is no integer between 4 and 5. So $f(1) \neq 4$. If $f(1) \geq 5$, then $f(f(1)) = 5 \leq f(1)$. But f(1) > 1 and f is strictly increasing, so it is impossible. So f(1) < 5. Therefore f(1) = 3. And thus f(3) = f(f(1)) = 5. Let me introduce a simple lemma.

Lemma 1. For $n \ge 0$, $f(5^n) = 3 \cdot 5^n$ and $f(3 \cdot 5^n) = 5^{n+1}$.

proof of Lemma 1. For n = 0, we have f(1) = 3 and f(3) = 5. If $f(5^k) = 3 \cdot 5^k$ and $f(3 \cdot 5^k) = 5^{k+1}$, then $f(5^{k+1}) = f(f(3 \cdot 5^k)) = 3 \cdot 5^{k+1}$ and thus $f(3 \cdot 5^{k+1}) = f(f(5^{k+1})) = 5^{k+2}$. So by induction, the lemma is true.

Note that $f(3 \cdot 5^n) - f(5^n) = 3 \cdot 5^n - 5^n$. Since f is strictly increasing, if $5^n \le m < 3 \cdot 5^n$ for some $n \ge 0$, then f(m+1) = f(m) + 1, and thus $f(m) = f(5^n) + (m-5^n)$. $5^3 = 125 \le 256 < 3 \cdot 5^3 = 375$. so, $f(256) = f(5^3) + (256 - 125) = 375 + 131 = 506$. \Box *Note.* One can determine the value of f(n) for all $n \in \mathbb{Z}^+$. Here let $[a,b]_{\mathbb{Z}^+} = \{x \in \mathbb{Z}^+ : a \leq x < b\} = \mathbb{Z}^+ \cap [a,b]$. \mathbb{Z}^+ is partitioned into

$$\mathbb{Z}^{+} = \bigsqcup_{n \ge 0} \left([5^{n}, 3 \cdot 5^{n}]_{\mathbb{Z}^{+}} \sqcup [3 \cdot 5^{n}, 5^{n+1}]_{\mathbb{Z}^{+}} \right).$$

If $m \in [5^n, 3 \cdot 5^n)_{\mathbb{Z}^+}$ for some $n \ge 0$, then $f(m) = 3 \cdot 5^n + (m - 5^n) = m + 2 \cdot 5^n$. If $m \in [3 \cdot 5^n, 5^{n+1})_{\mathbb{Z}^+}$ for some $n \ge 0, m - 2 \cdot 5^n \in [5^n, 3 \cdot 5^n)_{\mathbb{Z}^+}$, and we have $f(m - 2 \cdot 5^n) = m$. Thus, $f(m) = f(f(m - 2 \cdot 5^n)) = 5m - 2 \cdot 5^{n+1}$. Consequently,

$$f(m) = \begin{cases} m+2\cdot 5^n & \text{if } m \in [5^n, 3\cdot 5^n)_{\mathbb{Z}^+} \text{ for some } n \ge 0\\ 5m-2\cdot 5^{n+1} & \text{if } m \in [3\cdot 5^n, 5^{n+1})_{\mathbb{Z}^+} \text{ for some } n \ge 0 \end{cases}.$$