POW 2013-02

Functional equation
수리과학과 김호진

Pow 2013-02 Let \mathbb{Z}^{+}be the set of positive integers. Suppose that $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$satisfies the following conditions.
i) $f(f(x))=5 x$
ii) If $m \geq n$, then $f(m) \geq f(n)$
iii) $f(1) \neq 2$
find $f(256)$.
solution. $f(256)=506$.
If $f(m)=f(n)$, then $f(f(m))=5 m=f(f(n))=5 n$ so $m=n$. Therefore f is injective. Thus, f is strictly increasing, i.e. $m>n$ implies $f(m)>f(n)$.
$f(1)=3$. One can deduce this by elminating every other possibility.
If $f(1)=1$, then $5=f(f(1))=f(1)=1$, which is contradiction. So $f(1) \neq 1$. And $f(1) \neq 2$ is given.
If $f(1)=4$, then $f(f(1))=f(4)=5$. Thus $f(1)=4<f(2)<f(4)=5$. But there is no integer between 4 and 5 . So $f(1) \neq 4$.
If $f(1) \geq 5$, then $f(f(1))=5 \leq f(1)$. But $f(1)>1$ and f is strictly increasing, so it is impossible. So $f(1)<5$.
Therefore $f(1)=3$. And thus $f(3)=f(f(1))=5$.
Let me introduce a simple lemma.
Lemma 1. For $n \geq 0, f\left(5^{n}\right)=3 \cdot 5^{n}$ and $f\left(3 \cdot 5^{n}\right)=5^{n+1}$.
proof of Lemma 1. For $n=0$, we have $f(1)=3$ and $f(3)=5$.
If $f\left(5^{k}\right)=3 \cdot 5^{k}$ and $f\left(3 \cdot 5^{k}\right)=5^{k+1}$, then $f\left(5^{k+1}\right)=f\left(f\left(3 \cdot 5^{k}\right)\right)=3 \cdot 5^{k+1}$ and thus $f\left(3 \cdot 5^{k+1}\right)=f\left(f\left(5^{k+1}\right)\right)=5^{k+2}$. So by induction, the lemma is true.

Note that $f\left(3 \cdot 5^{n}\right)-f\left(5^{n}\right)=3 \cdot 5^{n}-5^{n}$. Since f is strictly increasing, if $5^{n} \leq m<3 \cdot 5^{n}$ for some $n \geq 0$, then $f(m+1)=f(m)+1$, and thus $f(m)=f\left(5^{n}\right)+\left(m-5^{n}\right)$. $5^{3}=125 \leq 256<3 \cdot 5^{3}=375$. so, $f(256)=f\left(5^{3}\right)+(256-125)=375+131=506$.

Note. One can determine the value of $f(n)$ for all $n \in \mathbb{Z}^{+}$.
Here let $[a, b)_{\mathbb{Z}^{+}}=\left\{x \in \mathbb{Z}^{+}: a \leq x<b\right\}=\mathbb{Z}^{+} \cap[a, b) . \mathbb{Z}^{+}$is partitioned into

$$
\mathbb{Z}^{+}=\bigsqcup_{n \geq 0}\left(\left[5^{n}, 3 \cdot 5^{n}\right)_{\mathbb{Z}^{+}} \sqcup\left[3 \cdot 5^{n}, 5^{n+1}\right)_{\mathbb{Z}^{+}}\right) .
$$

If $m \in\left[5^{n}, 3 \cdot 5^{n}\right)_{\mathbb{Z}^{+}}$for some $n \geq 0$, then $f(m)=3 \cdot 5^{n}+\left(m-5^{n}\right)=m+2 \cdot 5^{n}$. If $m \in\left[3 \cdot 5^{n}, 5^{n+1}\right)_{\mathbb{Z}^{+}}$for some $n \geq 0, m-2 \cdot 5^{n} \in\left[5^{n}, 3 \cdot 5^{n}\right)_{\mathbb{Z}^{+}}$, and we have $f\left(m-2 \cdot 5^{n}\right)=m$. Thus, $f(m)=f\left(f\left(m-2 \cdot 5^{n}\right)\right)=5 m-2 \cdot 5^{n+1}$. Consequently,

$$
f(m)=\left\{\begin{array}{ll}
m+2 \cdot 5^{n} & \text { if } m \in\left[5^{n}, 3 \cdot 5^{n}\right)_{\mathbb{Z}^{+}} \text {for some } n \geq 0 \\
5 m-2 \cdot 5^{n+1} & \text { if } m \in\left[3 \cdot 5^{n}, 5^{n+1}\right)_{\mathbb{Z}^{+}} \text {for some } n \geq 0
\end{array} .\right.
$$

