Proof.

For a subset sequence ($S_{1}, S_{2}, \cdots, S_{2^{n}-1}$) which S_{i} is all nonempty distinct subset of $\{1,2, \cdots, n\}$, we may say $\left(2^{n}-1\right) \times\left(2^{n}-1\right)$ matrix $A=$ $\left(a_{i, j}\right)$ is "generated by $\left(S_{1}, S_{2}, \cdots, S_{2^{n}-1}\right)$ " when $a_{i, j}=1\left(S_{i} \cap S_{j} \neq\right.$ \emptyset), 0 (otherwise).

Claim. Let A, A^{\prime} be a matrix which are generated by $\left(S_{1}, S_{2}, \cdots, S_{2^{n}-1}\right)$, $\left(S_{1}^{\prime}, S_{2}^{\prime}, \cdots, S_{2^{n}-1}^{\prime}\right)$, respectively. Then, $|\operatorname{det} A|=\left|\operatorname{det} A^{\prime}\right|$.

Proof of Claim. It it is enough to show that the statements holds when $S_{i}=S_{i}^{\prime}(i \neq p, q)$ and $S_{p}=S_{q}^{\prime}, S_{q}=S_{p}^{\prime}$. Interchanging rows and columns does not change the size of determinant. So, we interchange p th row and q th rows in A. After that, interchange p th column and q th column. From this, we can obtain A^{\prime} from A. Therefore, we can conclude that $|\operatorname{det} A|=\left|\operatorname{det} A^{\prime}\right|$.

Now, we will prove that $|\operatorname{det} A|=1$ for all n with induction on n. When $n=1$, it is trivial. Suppose the statements holds when $n=k$. Now let's look when $n=k+1$. Let ($S_{1}, S_{2}, \cdots, S_{2^{k}-1}$) be all nonempty distinct subset of $\{1,2, \cdots, k\}$.

Let's think $S=\left(\{k+1\}, S_{1} \cup\{k+1\}, \cdots, S_{2^{k}-1} \cup\{k+1\}, S_{1}, S_{2}, \cdots, S_{2^{k}-1}\right)$. It is all nonempty distinct subset of $\{1,2, \cdots, k, k+1\}$. By Claim, it is enough to calculate the determinant A which is generated by S.

Let's denote the matrix as A_{e} subtracting 1 st row from $2,3, \cdots, 2^{k}$ th row of A. Let A^{\prime} be a $\left(2^{k}-1\right) \times\left(2^{k}-1\right)$ matrix which is generated by $\left(S_{1}, S_{2}, \cdots, S_{2^{k}-1}\right)$. Since $S_{i} \cap\left(S_{j} \cup\{k+1\}\right)=S_{i} \cap S_{j}$ and A_{e} 's first column is ($1,0,0, \cdots, 0$), then it is enough to calculate determinant of the following:

$$
\left(\begin{array}{c|c}
O & A^{\prime} \\
\hline A^{\prime} & A^{\prime}
\end{array}\right)
$$

Since determinant of this matrix is $-\left(\operatorname{det} A^{\prime}\right)^{2}=-1$, then $|\operatorname{det} A|=1$. By induction, we proved it.

