## KAIST POW 2012-22

## KAIST Myeongjae Lee

(Simple integral) Compute $\int_{0}^{1} \frac{x^{k}-1}{\ln x} d x$

Proof. Define a function $f: \mathbb{R} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ by $f(k)=\int_{0}^{1} \frac{x^{k}-1}{\ln x} d x$. Since $f(0)=0<\infty$ and the integral support [ 0,1 ] is compact, $f(k)$ is finite and differentiable near 0 . In this neighborhood, and $k>-1, f^{\prime}(k)=\int_{0}^{1} x^{k} d x=\frac{1}{k+1}$. This implies that for $k>-1, f(k)$ is finite and

$$
\int_{0}^{1} \frac{x^{k}-1}{\ln x} d x=\ln (k+1) \text { for } k>-1
$$

For $k<-1$, use $\lim _{k \rightarrow-1^{+}} f(k)=-\infty$. Clearly $f(k)$ is decreasing since $x^{k}$ is decreasing for $x \in[0,1]$. Therefore,

$$
\int_{0}^{1} \frac{x^{k}-1}{\ln x} d x=-\infty \text { for } k \leq-1
$$

