KAIST POW 2012-11

KAIST Myeongjae Lee

(Dividing a circle) Let f be a continuous function from $[0,1]$ to a circle. Prove that there exists two closed intervals $I_{1}, I_{2} \subseteq[0,1]$ such that $I_{1} \cap I_{2}$ has at most one point, $f\left(I_{1}\right)$ and $f\left(I_{2}\right)$ are semicircles, and $f\left(I_{1}\right) \cup f\left(I_{2}\right)$ is a circle.

Proof. Let the circle C. I will directly construct such intervals. Note that continuous function f preserves connectedness and compactness. Since $[0,1]$ and C is bounded, every closed subspace of them is compact.

Step1. We find minimal interval whose image is the circle.
We consider $A=\{x \in[0,1]: f([0, x])=C\}$. It is nonempty since $1 \in A$. We will show that $d=\inf A \in A$. Assume the contrary that $f([0, d]) \neq C$. Let $R \in C-f([0, d])$ By definition of $A, R \in f([d, d+(1-d) / n])$ for all $n \in \mathbb{N}$. Let $x_{n} \in[d, d+(1-d) / n]$ and $f\left(x_{n}\right)=R$. Then by continuity of $f, f(d)=$ $f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=R$. This contradicts to $R \in C-f([0, d])$. By same argument on $B=\{x \in[x, d]: f([x, d])=C\}$ with $0 \in B$, we can take $a=\sup B \in B$. Let $f(a)=Q$ and P be the opposite point of Q.

Claim. $\quad f(a), f(d) \notin f((a, d)), f(a)=f(d)=Q$.
Assume the contrary that $f(a) \in f((a, d)), \exists r \in(a, d)$ such that $f(r)=f(a)$. We will use the fact that any $x>a$ cannot satisfy $f([x, d])=C$ to verify this assumption is impossible.
$f([a, r]) \neq C$. Since $f([a, r])$ is closed, it contains boundary points. If $f([a, r])$ is singleton, $f([r, d])=C$. So $f([a, r])$ is not singleton, so contains 2 boundary points. Let $b_{1}<b_{2} \in[a, r]$ such that $\left\{f\left(b_{1}\right), f\left(b_{2}\right)\right\}=\operatorname{bdy} f([a, r])$. Then $f([a, r])=f\left(\left[b_{1}, b_{2}\right]\right)$. So $f\left(\left[b_{1}, d\right]\right)=C$. That is, $a=b_{1}$. So $f(a)(=f(r))$ and $f\left(b_{2}\right)$ are distinct boundary points, we deduce that $f\left(\left[a, b_{2}\right]\right)=f\left(\left[b_{2}, r\right]\right)$. So $f\left(\left[b_{2}, d\right]\right)=C$. That is, $a=b_{2}$. Then $f([a, r])=f\left(\left[b_{1}, b_{2}\right]\right)$ is singleton, and this is contradiction. That is, there is no such r. Finally, $Q \notin f((a, d))$. By similar argument with minimality of d in $A, f(d) \notin f((a, d))$.

Since (a, d) is connected, $f((a, d))$ is connected so $C-f((a, d))$ is at most singleton. Thus, we have $f(a)=f(d)=Q$ and $Q \notin f((a, d))$.

Step2. We cut the path to get two semicircles.
Let $D=f^{-1}(P) \cap[a, d]$. This is nonempty because $f([a, d])=C$. Since f is continuous and $C-\{P\}$ is open, $f^{-1}(C-\{P\})$ is open. That is, $D=[a, d]-$ $f^{-1}(C-\{P\})$ is closed. So $b=\inf D, c=\sup D \in D$. Then $S_{1}=f([a, b]), S_{2}=$ $f([c, d])$ are semicircles containing P and Q because $f((a, b)), f((c, d))$ do not contain P and $Q . \quad[a, b] \cap[c, d]$ has at most one point because $b=\inf D \leq$
$\sup D=c$. If $S_{1}=S_{2}, f([a, c])=f([a, d])=C$. This contradicts to minimality of d. So $S_{1} \neq S_{2}$, which means $S_{1} \cup S_{2}=C$.

