Non-fixed points

KAIST 201 Myeongjae Lee

April 10, 2012

Let X be a finite non-empty set. Suppose that there is a function $f: X \rightarrow X$ such that $f^{20120407}(x)=x$ for all $x \in X$. Prove that the number of elements x in X such that $f(x) \neq x$ is divisible by 20120407

Proof. Since $f^{20120407}(X)=X, f(X)=X$. That is, f is surjective. Then f is bijective because X is finite. Define $Y=\{x \in X \mid f(x) \neq x\}$. Let the number of elements of Y is n. Since 20120407 is prime, let's denote 20120407 by p.

If Y is empty, $n=0$ so it's divisible. If not, suppose $y_{1}, y_{2} \in Y$. Define a relation \sim by $y_{1} \sim y_{2}$ iff $\exists k \in N$ such that $y_{1}=f^{k}\left(y_{2}\right)$. Then we can choose such $k<p$ since f^{p} is identity. This relation becomse an equivalence relation. - $a \sim a$ by $k=0$

- $a \sim b$ implies $b \sim a$ because $a=f^{k}(b)$ implies $f^{p-k}(a)=f^{p}(b)=b$
- $a \sim b$ and $b \sim c$ implies $a \sim c$ because $a=f^{k_{1}}(b), b=f^{k_{2}}(c)$ implies $a=$ $f^{k_{1}+k_{2}}(c)$

Claim : each equivalent class has p elements.
Let $y \in Y . \forall k<p, f^{k}(y) \neq y$ because if so, since $(p, x)=1, \exists m_{1}, m_{2} \in Z$ such that $m_{1} p+m_{2} k=1$. Then, $f(y)=f^{m_{1} p+m_{2} k}(y)=y$ since f is bijective. This is contradiction to $y \in Y$. That is, if $k_{1}<k_{2}<p, f^{k_{1}}(y) \neq f^{k_{2}}(y)$ since $f^{k_{2}}(y)=f^{k_{2}-k_{1}}\left(f^{k_{1}}(y)\right)$ and $k_{2}-k_{1}<p$. So all $f^{k}(y)$ for $k<p$ are distict. By this fact and because f^{p} is identity, each equivalent class has p elements in the form of $\langle y\rangle=\left\{f^{k}(y): 0 \leq k \leq p-1\right\}$

If Y is divided to r equivalent classes, then $n=p r$. Therefore, p divides n.

