KAIST POW 2012-9

KAIST Myeongjae Lee

(Rank of a matrix) Let M be an $n \times n$ matrix over the reals. Prove that $\operatorname{rank} M=\operatorname{rank} M^{2}$ if and only if $\lim _{\lambda \rightarrow 0}\left(\lambda I_{n}+M\right)^{-1} M$ exists.

Proof. Suppose that rank $M=k$. Then $\exists\left\{B_{1}, \ldots, B_{k}\right\} \subset \mathbb{R}^{n}$ a basis of the row M. Let $B \in \mathbb{R}^{k \times n}$ with B_{1}, \ldots, B_{k} as rows. Then $M=A B$ for some $A \in \mathbb{R}^{n \times k}$ since row $M=\operatorname{row} B$. Then $\operatorname{col} A=\operatorname{col} M$. So we get $\operatorname{rank} A=$ $\operatorname{rank} B=k$.

Remark that $\exists \lim _{\lambda \rightarrow 0} X \Rightarrow \exists \lim _{\lambda \rightarrow 0} Y X \wedge \exists \lim _{\lambda \rightarrow 0} X Y$ for all constant matrix Y since every entry of $X Y$ and $Y X$ is a linear combination of some entries of X.

Step1. $\quad \operatorname{rank} M^{2}=\operatorname{rank} M \Leftrightarrow B A$ is invertible.
Note that $M^{2}=(A B)(A B)=A(B A) B . B A$ is invertible $\Leftrightarrow \operatorname{ran}(B A) B=$ $\operatorname{ran} B$, then $\operatorname{ran} M^{2}=\operatorname{ran} A B=\operatorname{ran} M$.

Step2. $\exists \lim _{\lambda \rightarrow 0}\left(\lambda I_{n}+M\right)^{-1} M \Leftrightarrow \exists \lim _{\lambda \rightarrow 0}\left(\lambda I_{k}+B A\right)^{-1}$
Now we use the formula

$$
\left(\lambda I_{n}+A B\right)^{-1}=\lambda^{-1}\left[I_{n}-A\left(\lambda I_{k}+B A\right)^{-1} B\right]
$$

This is easily verified by matrix multiplication. So
$\left(\lambda I_{n}+M\right)^{-1} M=\left(\lambda I_{n}+A B\right)^{-1} A B=I_{n}-\lambda\left(\lambda I_{n}+A B\right)^{-1}=A\left(\lambda I_{k}+B A\right)^{-1} B$
Since $\operatorname{rank} A=\operatorname{rank} B=k, \operatorname{col} B=\mathbb{R}^{n}$. That is, $\exists B^{\prime} \in \mathbb{R}^{n \times k}$ such that $B B^{\prime}=I_{k}$. By similar argument on row $A, \exists A^{\prime} \in \mathbb{R}^{k \times n}$ such that $A^{\prime} A=I_{k}$. So $\left(\lambda I_{k}+B A\right)^{-1}=A^{\prime} A\left(\lambda I_{k}+B A\right)^{-1} B B^{\prime}$

Therefore, $\exists \lim _{\lambda \rightarrow 0} A\left(\lambda I_{k}+B A\right)^{-1} B \Leftrightarrow \exists \lim _{\lambda \rightarrow 0} A^{\prime} A\left(\lambda I_{k}+B A\right)^{-1} B B^{\prime}=$ $\lim _{\lambda \rightarrow 0}\left(\lambda I_{k}+B A\right)^{-1}$

Step3. $\exists \lim _{\lambda \rightarrow 0}\left(\lambda I_{k}+B A\right)^{-1} \Leftrightarrow B A$ is invertible.
Note that $\left(\lambda I_{k}+B A\right)^{-1}=\frac{1}{\operatorname{det}\left(\lambda I_{k}+B A\right)} \operatorname{adj}\left(\lambda I_{k}+B A\right) . \quad \lim _{\lambda \rightarrow 0} \operatorname{adj}\left(\lambda I_{k}+\right.$ $B A)=\operatorname{adj} B A$ and $\lim _{\lambda \rightarrow 0} \operatorname{det}\left(\lambda I_{k}+B A\right)=\operatorname{det} B A$ because determinant and entries of the adjoint matrix are composed of product and sum of some entries from original matrix. So, $\exists \lim _{\lambda \rightarrow 0}\left(\lambda I_{k}+B A\right)^{-1} \Leftrightarrow \operatorname{det} B A \neq 0 \Leftrightarrow B A$ is invertible.

Consequently, $\operatorname{rank} M=\operatorname{rank} M^{2} \Leftrightarrow \exists \lim _{\lambda \rightarrow 0}\left(\lambda I_{n}+M\right)^{-1} M$

