KAIST POW 2012-9

KAIST Myeongjae Lee

(Rank of a matrix) Let M be an $n \times n$ matrix over the reals. Prove that rank $M = \operatorname{rank} M^2$ if and only if $\lim_{\lambda \to 0} (\lambda I_n + M)^{-1} M$ exists.

Proof. Suppose that rank M = k. Then $\exists \{B_1, \ldots, B_k\} \subset \mathbb{R}^n$ a basis of the row M. Let $B \in \mathbb{R}^{k \times n}$ with B_1, \ldots, B_k as rows. Then M = AB for some $A \in \mathbb{R}^{n \times k}$ since row $M = \operatorname{row} B$. Then $\operatorname{col} A = \operatorname{col} M$. So we get rank A = $\operatorname{rank} B = k.$

Remark that $\exists \lim_{\lambda \to 0} X \Rightarrow \exists \lim_{\lambda \to 0} YX \land \exists \lim_{\lambda \to 0} XY$ for all constant matrix Y since every entry of XY and YX is a linear combination of some entries of X.

Step1. rank $M^2 = \operatorname{rank} M \Leftrightarrow BA$ is invertible.

Note that $M^2 = (AB)(AB) = A(BA)B$. BA is invertible $\Leftrightarrow \operatorname{ran}(BA)B =$ ran B, then ran $M^2 = \operatorname{ran} AB = \operatorname{ran} M$.

Step2. $\exists \lim_{\lambda \to 0} (\lambda I_n + M)^{-1} M \Leftrightarrow \exists \lim_{\lambda \to 0} (\lambda I_k + BA)^{-1}$ Now we use the formula

$$(\lambda I_n + AB)^{-1} = \lambda^{-1} [I_n - A(\lambda I_k + BA)^{-1}B]$$

This is easily verified by matrix multiplication. So

$$(\lambda I_n + M)^{-1}M = (\lambda I_n + AB)^{-1}AB = I_n - \lambda(\lambda I_n + AB)^{-1} = A(\lambda I_k + BA)^{-1}B$$

Since rank $A = \operatorname{rank} B = k$, $\operatorname{col} B = \mathbb{R}^n$. That is, $\exists B' \in \mathbb{R}^{n \times k}$ such that $BB' = I_k$. By similar argument on row $A, \exists A' \in \mathbb{R}^{k \times n}$ such that $A'A = I_k$. So $(\lambda I_k + BA)^{-1} = A'A(\lambda I_k + BA)^{-1}BB'$

Therefore, $\exists \lim_{\lambda \to 0} A(\lambda I_k + BA)^{-1}B \Leftrightarrow \exists \lim_{\lambda \to 0} A'A(\lambda I_k + BA)^{-1}BB' = B'$ $\lim_{\lambda \to 0} (\lambda I_k + BA)^{-1}$

Step3. $\exists \lim_{\lambda \to 0} (\lambda I_k + BA)^{-1} \Leftrightarrow BA \text{ is invertible.}$ Note that $(\lambda I_k + BA)^{-1} = \frac{1}{\det(\lambda I_k + BA)} \operatorname{adj}(\lambda I_k + BA)$. $\lim_{\lambda \to 0} \operatorname{adj}(\lambda I_k + BA)$ BA = adj BA and $\lim_{\lambda \to 0} \det(\lambda I_k + BA) = \det BA$ because determinant and entries of the adjoint matrix are composed of product and sum of some entries from original matrix. So, $\exists \lim_{\lambda \to 0} (\lambda I_k + BA)^{-1} \Leftrightarrow \det BA \neq 0 \Leftrightarrow BA$ is invertible.

Consequently, rank $M = \operatorname{rank} M^2 \Leftrightarrow \exists \lim_{\lambda \to 0} (\lambda I_n + M)^{-1} M$