Proof. Define $b_{n}:=\log a_{n}$. Then b_{n+1} is the arithmetic mean of b_{n}, \cdots, b_{n-k+1}. We want to check whether limit of b_{n} exists. So, it is enough to show that b_{n} is a Cauchy sequence.

Assume that b_{1}, \cdots, b_{k} is contained for some interval of length x. Then it is obvious that b_{i} is contained in that interval for all i. Also, for all $i \geq k+1$,

$$
b_{i+1}-b_{i}=\frac{b_{i}+\cdots+b_{i-k+1}}{k}-\frac{b_{i-1}+\cdots+b_{i-k}}{k}=\frac{b_{i}-b_{i-k}}{k}
$$

Then for all i, j between $k+1$ and $2 k$,

$$
\left|b_{i}-b_{j}\right|=\left|\sum_{l=i}^{j-1} \frac{b_{l}-b_{l-k}}{k}\right| \leq \sum_{l=i}^{j-1}\left|\frac{b_{l}-b_{l-k}}{k}\right| \leq \sum_{l=i}^{j-1} \frac{x}{k} \leq \frac{k-1}{k} x
$$

Therefore, $b_{k+1}, b_{k+2}, \cdots, b_{2 k}$ is contained in some interval of length $\frac{k-1}{k} x$, and so is a_{i} for all $i \geq 2 k+1$. In the same way, we can show that for any n, there is an interval of length $\left(\frac{k-1}{k}\right)^{n} x$ which contains b_{i} 's for all $i>n k$. Thus b_{i} is a Cauchy sequence and its limit exists. Then limit of $a_{n}=e^{b_{n}}$ exists.

From definition, we can observe that

$$
\begin{aligned}
b_{n+1}+2 b_{n+2}+\cdots+k b_{n+k} & =b_{n+1}+2 b_{n+2}+\cdots+(k-1) b_{n+k-1}+\left(b_{n}+\cdots+b_{n+k-1}\right) \\
& =b_{n}+2 b_{n+1}+\cdots+k b_{n+k-1} \\
& =\cdots \cdots \\
& =b_{1}+2 b_{2}+\cdots+k b_{k}
\end{aligned}
$$

Therefore, by taking the limit for each side,

$$
b=\lim _{n \rightarrow \infty} b_{n}=\frac{2}{k(k+1)}\left(b_{1}+\cdots+k b_{k}\right)
$$

So we obtain

$$
a=\lim _{n \rightarrow \infty} a_{n}=e^{\lim _{n \rightarrow \infty} b_{n}}=e^{\frac{2}{k(k+1)}\left(b_{1}+\cdots+k b_{k}\right)}=\sqrt[\frac{k(k+1)}{2}]{a_{1} a_{2}^{2} \cdots a_{k}^{k}}
$$

