Minjae's MINE

Protected: POW 2012-2 Sum with a permutation

Let S_{n}^{j} be the set of all permutations on $\{1,2, \cdots, n\} \backslash\{j\}$. I have a claim which can be proved by the induction.

Claim. With the same restriction (but, except for the condition that $\sum_{i=1}^{n} x_{i}$ is zero) of the original problem,

$$
\sum_{\pi \in S_{n}} \prod_{k=1}^{n-1} \frac{1}{\sum_{i=1}^{k} x_{\pi(i)}}=\frac{\sum_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}}
$$

proof. Let's prove it by the induction. For $n=2$, it is trivial. Suppose that the claim is true for some $n-1$ which is greater than 1 . Next, to check that the claim is also true for n, see the following equalities.

$$
\sum_{\pi \in S_{n}} \prod_{k=1}^{n-1} \frac{1}{\sum_{i=1}^{k} x_{\pi(i)}}=\sum_{j=1}^{n} \frac{1}{\sum_{i=1}^{n} x_{i}-x_{j}} \sum_{\pi \in S_{n}^{j}} \prod_{k=1}^{n-2} \frac{1}{\sum_{i=1}^{k} x_{\pi(i)}}
$$

(by the induction hypothesis) $=\sum_{j=1}^{n} \frac{1}{\sum_{i=1}^{n} x_{i}-x_{j}} \frac{\sum_{i=1}^{n} x_{i}-x_{j}}{\prod_{i=1}^{n} x_{i} / x_{j}}=\frac{\sum_{j=1}^{n} x_{j}}{\prod_{i=1}^{n} x_{i}}$.
Therefore, the claim is verified by the induction. As a result, the only possible value of the original sum is 0 .

