Problem of the Week 2012-2

Weejee Cho

February 20, 2012

Problem: Let n be a positive integer and let S_{n} be the set of all permutations on $\{1,2, \ldots, n\}$. Assume $x_{1}+x_{2}+\cdots+x_{n}=0$ and $\sum_{i \in A} x_{i} \neq 0$ for all nonempty proper subsets A of $\{1,2, \ldots, n\}$. Find all possible values of

$$
\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(1)}} \frac{1}{x_{\pi(1)}+x_{\pi(2)}} \cdots \frac{1}{x_{\pi(1)}+\cdots+x_{\pi(n-1)}}
$$

Solution:

We see that

$$
\begin{aligned}
& \sum_{\pi \in S_{n}} \frac{1}{x_{\pi(1)}} \frac{1}{x_{\pi(1)}+x_{\pi(2)}} \cdots \frac{1}{x_{\pi(1)}+\cdots+x_{\pi(n-1)}} \\
& =\sum_{\pi \in S_{n}} \prod_{m=1}^{n-1} \frac{1}{\sum_{i=1}^{m} x_{\pi(i)}}
\end{aligned}
$$

The second expression has a consistent definition for $n=1$, where it is reduced to 1 . On the other hand, for $n \geq 2$, claim 1 (to be stated and proved below) along with the condition that $x_{1}+x_{2}+\cdots+x_{n}=0$ lead to

$$
\sum_{\pi \in S_{n}} \prod_{m=1}^{n-1} \frac{1}{\sum_{i=1}^{m} x_{\pi(i)}}=0 \quad(n \geq 2)
$$

Therefore, the only possible values of the expression given in this problem are 0 and 1.

Claim 1. Let n be an integer such that $n \geq 2$ and $\sum_{i \in A} x_{i} \neq 0$ for all nonempty proper subsets A of $\{1,2, \ldots, n\}$. Then,

$$
\sum_{\pi \in S_{n}} \prod_{m=1}^{n-1} \frac{1}{\sum_{i=1}^{m} x_{\pi(i)}}=\frac{\sum_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}}
$$

Proof of claim 1.

We prove this using mathematical induction on n.
(i) Claim 1 holds for $n=2$ because

$$
\begin{aligned}
& (\text { L.H.S. })=\frac{1}{x_{1}}+\frac{1}{x_{2}}, \\
& (\text { R.H.S. })=\frac{x_{1}+x_{2}}{x_{1} x_{2}}=\frac{1}{x_{1}}+\frac{1}{x_{2}} .
\end{aligned}
$$

(ii) Assume that the claim holds for $n=k$. Now consider the case where $n=k+1$. Among the terms in the summation over $\pi \in S_{k+1}$, group together those with the same value of $\pi(k+1)$. For a fixed $\pi(k+1)=p$, we are effectively considering all permutations of $\{1, \ldots, p-1, p+1, \ldots, k+1\}$, so let us define

$$
y_{i}^{(p)} \equiv\left\{\begin{array}{ll}
x_{i} & (i<p) \\
x_{i+1} & (i \geq p)
\end{array} .\right.
$$

Then,

$$
\begin{aligned}
\sum_{\pi \in S_{k+1}} \prod_{m=1}^{(k+1)-1} \frac{1}{\sum_{i=1}^{m} x_{\pi(i)}} & =\sum_{p=1}^{k+1} \sum_{\pi^{\prime} \in S_{k}} \prod_{m=1}^{k} \frac{1}{\sum_{i=1}^{m} y_{\pi^{\prime}(i)}^{(p)}} \\
& =\sum_{p=1}^{k+1} \frac{1}{\sum_{i=1}^{k} y_{i}^{(p)}} \sum_{\pi^{\prime} \in S_{k}} \prod_{m=1}^{k-1} \frac{1}{\sum_{i=1}^{m} y_{\pi^{\prime}(i)}^{(p)}} \\
& =\sum_{p=1}^{k+1} \frac{1}{\prod_{i=1}^{k} y_{i}^{(p)}}=\sum_{p=1}^{k+1} \prod_{\substack{1 \leq i \leq k+1 \\
i \neq p}} \frac{1}{x_{i}} \\
& =\frac{\sum_{i=1}^{k+1} x_{i}}{\prod_{i=1}^{k+1} x_{i}},
\end{aligned}
$$

To obtain the third equality, we have used the assumption that the claim is valid for $n=k$. Now we have shown that claim 1 holds for $n=k+1$.

By (i) and (ii) above, claim 1 is true for any integer n satisfying $n \geq 2$. Q. E. D.

An alternative method to prove claim 1.

Consider the following equation:

$$
\begin{aligned}
\frac{1}{\prod_{i=1}^{n} x_{i}} & =\int_{0}^{\infty} d t_{1} \int_{0}^{\infty} d t_{2} \cdots \int_{0}^{\infty} d t_{n} \exp \left(-\sum_{m=1}^{n} x_{m} t_{m}\right) \\
& =\sum_{\pi \in S_{n}} \int_{0}^{\infty} d t_{\pi(1)} \int_{0}^{t_{\pi(1)}} d t_{\pi(2)} \cdots \int_{0}^{t_{\pi(n-1)}} d t_{\pi(n)} \exp \left(-\sum_{m=1}^{n} x_{m} t_{m}\right) \\
& =\sum_{\pi \in S_{n}} \int_{0}^{\infty} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} \exp \left(-\sum_{m=1}^{n} x_{\pi(m)} t_{m}\right) \\
& =\sum_{\pi \in S_{n}} \int_{0}^{\infty} d \tilde{t}_{1} \int_{0}^{\infty} d \tilde{t}_{2} \cdots \int_{0}^{\infty} d \tilde{t}_{n}\left|\frac{\partial\left(t_{1}, \ldots, t_{n}\right)}{\partial\left(\tilde{t}_{1}, \ldots, \tilde{t}_{n}\right)}\right| \exp \left[-\sum_{m=1}^{n}\left(\sum_{i=1}^{m} x_{\pi(i)}\right) \tilde{t}_{m}\right] \\
& =\sum_{\pi \in S_{n}} \prod_{m=1}^{n} \frac{1}{\sum_{i=1}^{m} x_{\pi(i)}} \\
& =\frac{1}{\sum_{i=1}^{n} x_{i}} \sum_{\pi \in S_{n}} \prod_{m=1}^{n-1} \frac{1}{\sum_{i=1}^{m} x_{\pi(i)}} .
\end{aligned}
$$

In the second line, we have divided the region of integration into n ! different parts, where each of them corresponds to the case where $t_{\pi(1)}>t_{\pi(2)}>\ldots>t_{\pi(n)}\left(\pi \in S_{n}\right)$. Next, we have relabeled the integration variables by $t_{\pi(i)} \rightarrow t_{i}$. Then, we have made a change of integration variables such that $\tilde{t_{n}}=t_{n}$ and $\tilde{t_{i}}=t_{i}-t_{i+1}(i<n)$, which gives $t_{i}=\sum_{j=i}^{n} \tilde{t}_{j}$. The Jacobian matrix is an upper triangular matrix whose nonzero elements are all equal to 1 , and hence its determinant is simply 1 .

Our analysis up to now is sufficient as a motivation for claim 1, but there is a problem if we actually try to prove it following the same lines. The reason is that the integrations are well-defined only when $\operatorname{Re}\left(x_{i}\right)>0$ for all i. To avoid this pathology, we first make a replacement $x_{i} \rightarrow z+x_{i}$ to obtain

$$
\frac{1}{\prod_{i=1}^{n}\left(z+x_{i}\right)}=\frac{1}{n z+\sum_{i=1}^{n} x_{i}} \sum_{\pi \in S_{n}} \prod_{m=1}^{n-1} \frac{1}{m z+\sum_{i=1}^{m} x_{\pi(i)}} .
$$

Again, $\operatorname{Re}\left(z+x_{i}\right)>0$ should be satisfied for all i, for the intermediate steps to make sense. However, from both sides of the above relation, we can analytically continue z to the whole complex plane aside from a finite number of poles. Now we can multiply both sides by $n z+\sum_{i=1}^{n} x_{i}$ and take the limit where $z \rightarrow 0$, to prove claim 1 .

