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Problem: Let n be a positive integer and let Sn be the set of all permutations on {1, 2, . . . , n}.
Assume x1 + x2 + · · · + xn = 0 and

∑
i∈A

xi ̸= 0 for all nonempty proper subsets A of {1, 2, . . . , n}.

Find all possible values of∑
π∈Sn

1

xπ(1)

1

xπ(1) + xπ(2)
· · · 1

xπ(1) + · · ·+ xπ(n−1)
.

Solution:

We see that ∑
π∈Sn

1

xπ(1)

1

xπ(1) + xπ(2)
· · · 1

xπ(1) + · · ·+ xπ(n−1)

=
∑
π∈Sn

n−1∏
m=1

1∑m
i=1 xπ(i)

.

The second expression has a consistent definition for n = 1, where it is reduced to 1. On the
other hand, for n ≥ 2, claim 1 (to be stated and proved below) along with the condition that
x1 + x2 + · · ·+ xn = 0 lead to

∑
π∈Sn

n−1∏
m=1

1∑m
i=1 xπ(i)

= 0 (n ≥ 2) .

Therefore, the only possible values of the expression given in this problem are 0 and 1.

Claim 1. Let n be an integer such that n ≥ 2 and
∑

i∈A xi ̸= 0 for all nonempty proper subsets
A of {1, 2, . . . , n}. Then, ∑

π∈Sn

n−1∏
m=1

1∑m
i=1 xπ(i)

=

∑n
i=1 xi∏n
i=1 xi

.
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Proof of claim 1.

We prove this using mathematical induction on n.

(i) Claim 1 holds for n = 2 because

(L.H.S.) =
1

x1
+

1

x2
,

(R.H.S.) =
x1 + x2
x1x2

=
1

x1
+

1

x2
.

(ii) Assume that the claim holds for n = k. Now consider the case where n = k + 1. Among the
terms in the summation over π ∈ Sk+1, group together those with the same value of π(k+1). For a
fixed π(k+1) = p, we are effectively considering all permutations of {1, . . . , p− 1, p+1, . . . , k+1},
so let us define

y
(p)
i ≡

{ xi (i < p)
xi+1 (i ≥ p)

.

Then,

∑
π∈Sk+1

(k+1)−1∏
m=1

1∑m
i=1 xπ(i)

=

k+1∑
p=1

∑
π′∈Sk

k∏
m=1

1∑m
i=1 y

(p)
π′(i)

=
k+1∑
p=1

1∑k
i=1 y

(p)
i

∑
π′∈Sk

k−1∏
m=1

1∑m
i=1 y

(p)
π′(i)

=

k+1∑
p=1

1∏k
i=1 y

(p)
i

=

k+1∑
p=1

∏
1≤i≤k+1

i̸=p

1

xi

=

∑k+1
i=1 xi∏k+1
i=1 xi

,

To obtain the third equality, we have used the assumption that the claim is valid for n = k. Now
we have shown that claim 1 holds for n = k + 1.

By (i) and (ii) above, claim 1 is true for any integer n satisfying n ≥ 2. Q. E. D.
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An alternative method to prove claim 1.

Consider the following equation:

1∏n
i=1 xi

=

∫ ∞

0
dt1

∫ ∞

0
dt2 · · ·

∫ ∞

0
dtn exp

(
−

n∑
m=1

xmtm

)

=
∑
π∈Sn

∫ ∞

0
dtπ(1)

∫ tπ(1)

0
dtπ(2) · · ·

∫ tπ(n−1)

0
dtπ(n) exp

(
−

n∑
m=1

xmtm

)

=
∑
π∈Sn

∫ ∞

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn exp

(
−

n∑
m=1

xπ(m)tm

)

=
∑
π∈Sn

∫ ∞

0
dt̃1

∫ ∞

0
dt̃2 · · ·

∫ ∞

0
dt̃n

∣∣∣∣∂(t1, . . . , tn)∂(t̃1, . . . , t̃n)

∣∣∣∣ exp
[
−

n∑
m=1

(
m∑
i=1

xπ(i)

)
t̃m

]

=
∑
π∈Sn

n∏
m=1

1∑m
i=1 xπ(i)

=
1∑n

i=1 xi

∑
π∈Sn

n−1∏
m=1

1∑m
i=1 xπ(i)

.

In the second line, we have divided the region of integration into n! different parts, where each of
them corresponds to the case where tπ(1) > tπ(2) > . . . > tπ(n) (π ∈ Sn). Next, we have relabeled
the integration variables by tπ(i) → ti. Then, we have made a change of integration variables such
that t̃n = tn and t̃i = ti − ti+1 (i < n), which gives ti =

∑n
j=i t̃j . The Jacobian matrix is an upper

triangular matrix whose nonzero elements are all equal to 1, and hence its determinant is simply 1.

Our analysis up to now is sufficient as a motivation for claim 1, but there is a problem if we actually
try to prove it following the same lines. The reason is that the integrations are well-defined only
when Re(xi) > 0 for all i. To avoid this pathology, we first make a replacement xi → z + xi to
obtain

1∏n
i=1(z + xi)

=
1

nz +
∑n

i=1 xi

∑
π∈Sn

n−1∏
m=1

1

mz +
∑m

i=1 xπ(i)
.

Again, Re(z+xi) > 0 should be satisfied for all i, for the intermediate steps to make sense. However,
from both sides of the above relation, we can analytically continue z to the whole complex plane
aside from a finite number of poles. Now we can multiply both sides by nz+

∑n
i=1 xi and take the

limit where z → 0, to prove claim 1.
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