Let $S=\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(1)}} \frac{1}{x_{\pi(1)}+x_{\pi(2)}} \ldots \frac{1}{x_{\pi(1)}+x_{\pi(2)}+\ldots+x_{\pi(n-1)}}$

Since permutations are bijective functions from $\{1,2, \ldots, \mathrm{n}\}$ to $\{1,2, \ldots, \mathrm{n}\}$ so there is an inverse of each permutation in S_{n}.
We can apply a permutation $\pi_{1}=\left(\begin{array}{llll}1 & 2 & 3 & \ldots \\ 2 & 1 & 3 & \ldots\end{array}\right)$ n all elements of S_{n}, and get S_{n} as a new expression

$$
S_{n}=\left\{\pi \pi_{1} \mid \pi \in S_{n}\right\}
$$

because $\forall \pi \in S_{n}, \pi^{\prime}=\pi \pi_{1}^{-1} \in S_{n}$ satisfies $\pi=\pi^{\prime} \pi_{1}$

Then we deduce

$$
\begin{equation*}
S=\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(2)}} \frac{1}{x_{\pi(2)}+x_{\pi(1)}} \cdots \frac{1}{x_{\pi(1)}+x_{\pi(2)}+\ldots+x_{\pi(n-1)}} \tag{2}
\end{equation*}
$$

By adding equation (1) and (2),

$$
\begin{align*}
& 2 S=\sum_{\pi \in S_{n}}\left(\frac{1}{x_{\pi(1)}}+\frac{1}{x_{\pi(2)}}\right) \frac{1}{x_{\pi(1)}+x_{\pi(2)}} \cdots \frac{1}{x_{\pi(1)}+x_{\pi(2)}+\ldots+x_{\pi(n-1)}} \\
& =\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(1)} x_{\pi(2)}} \frac{1}{x_{\pi(1)}+x_{\pi(2)}+x_{\pi(3)}} \cdots \frac{1}{x_{\pi(1)}+x_{\pi(2)}+\ldots+x_{\pi(n-1)}} \tag{3}
\end{align*}
$$

Applying $\pi_{2}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & \ldots & n \\ 2 & 3 & 1 & 4 & \ldots & n\end{array}\right)$ and $\pi_{3}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & \ldots & n \\ 3 & 1 & 2 & 4 & \ldots & n\end{array}\right)$ by same way,

$$
\begin{align*}
2 S & =\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(2)} x_{\pi(3)}} \frac{1}{x_{\pi(2)}+x_{\pi(3)}+x_{\pi(1)}} \cdots \frac{1}{x_{\pi(1)}+x_{\pi(2)}+\ldots+x_{\pi(n-1)}} \tag{4}\\
2 S & =\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(3)} x_{\pi(1)}} \frac{1}{x_{\pi(3)}+x_{\pi(1)}+x_{\pi(2)}} \cdots \frac{1}{x_{\pi(1)}+x_{\pi(2)}+\ldots+x_{\pi(n-1)}} \tag{5}
\end{align*}
$$

by adding equation (3), (4) and (5),
$3 \times 2 S=\sum_{\pi \in S_{n}}\left(\frac{1}{x_{\pi(1)} x_{\pi(2)}}+\frac{1}{x_{\pi(2)} x_{\pi(3)}}+\frac{1}{x_{\pi(3)} x_{\pi(1)}}\right) \frac{1}{x_{\pi(1)}+x_{\pi(2)}+x_{\pi(3)}} \ldots$
$=\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(1)} x_{\pi(2)} x_{\pi(3)}} \frac{1}{x_{\pi(1)}+x_{\pi(2)}+x_{\pi(3)}+x_{\pi(4)}} \ldots$

By repeating same method, we finally get
$(n-1)!S=\sum_{\pi \in S_{n}} \frac{1}{x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(n-1)}}$

$$
n!S=\sum_{\pi \in S_{n}} \frac{x_{\pi(1)}+x_{\pi(2)}+\ldots+x_{\pi(n)}}{x_{\pi(1)} x_{\pi(2)} \ldots x_{\pi(n-1)}}=0 \quad\left(\text { since } x_{1}+x_{2}+\ldots+x_{n}=0\right)
$$

$$
\therefore S=0
$$

Therefore, the only possible value of given sum is 0 .

