Proof. It is enough to show that $\forall n \in \mathbf{N}, \forall c_{i} \in \mathbf{R}(i=1, \cdots, n)$ satisfying $\sum_{i=1}^{n} c_{i}=0$, there exist $m \in\{1, \cdots, n\}$ such that

$$
\sum_{k=0}^{s} c_{m+k} \geq 0 \quad \forall s=0,1, \cdots, n-2
$$

(When $m>n$, treat $c_{m}=c_{m-n}$). (Why: Let n be the number of stations. Label them as $1, \cdots, n$, in clockwise direction. Let a_{i} be the amount of money hidden in station i, b_{i} be the cost to move from station i to $i+1$. Then finding the station able to start (in clockwise direction) means the same with above statement, when we define $c_{i}=a_{i}-b_{i}$.

We use induction on n to prove this statement; When $n=2$, since $c_{1}+c_{2}=0$, either of $i=1,2$ satisfies $c_{i} \geq 0$. Then $m=i$ satisfies the condition above.
Assume the statement holds for $n=l$. Now let $c_{i}(i=1, \cdots, l+1)$ be the real numbers satisfying $\sum_{i=1}^{l+1} c_{i}=0$. Then obviously one of them is not negative. WLOG let the one c_{i}. Now define $c_{i}^{\prime}(i=1, \cdots, l)$ as follows:

$$
c_{1}^{\prime}=c_{1}+c_{2} \text { and } c_{i}^{\prime}=c_{i+1} \text { for } i=2, \cdots, l
$$

Then it is easy to check that $\sum_{i=1}^{l} c_{i}^{\prime}=0$. So from induction hypothesis, there exist $m^{\prime} \in\{1, \cdots, l\}$ such that $\sum_{k=0}^{s} c_{m^{\prime}+k}^{\prime} \geq 0$ for $s=0,1, \cdots, l-2$. Now set $m:=1$ if $m^{\prime}=1$ and $m:=m^{\prime}+1$ otherwise. Then as s varies in the equation above, we get $\sum_{k=0}^{s} c_{m+k} \geq 0$ for $s=0,1, \cdots, l-1$ except when $c_{m+s}=c_{1}$. In other words, all the sum $c_{m}+\cdots+c_{m+s}$ is proved to be non-negative, except when it ends with c_{1}. But since we already know that $c_{1} \geq 0$, this one also can be proved easily. Therefore all the sum is non-negative, so the statement holds for $n=l+1$.

In conclusion, by induction on n, we proved the foremost statement which means that we can choose a station to start for a roundtrip without any money matters. Thus, there is always a station to start for a roundtrip of Subway Line 2, regardless of number of station, amount of money hidden or payment for each segment.

