Proof. Let f(z) =am —a" 1 —... —x -1, F(z) = (x — 1) f(x) = 2™ — 22™ + 1. Treat
them as polynomials defined on complex plane C.
Claim. Exactly one complex zero of f satisfies |z| > 1, and the other n — 1 zeros of f

satisfy |z| < 1.

Proof. Tt is equivalent to show that F' has exactly one zero with |z| = 1, one with
|z| > 1, and n — 1 zeros with |z| < 1. Let’s first prove that there is exactly one root of
F with |z| = 1. If root z of F has absolute value 1, then we have that
2" = 2" 41

thus

2=2|2" =" 1 < |z"T+1=2
This ineqaulity only holds when |2"*! 4+ 1] = |z"T1| + 1, in other words, 2! = 1. But
since F'(z) =0, 2" = zngi = 1. Dividing 2"*! = 1 by equation obtained just before,
we get z = 1. So 1 is the only zero of F' lies on the unit circle.
Let’s denote with oy, aa,- -, ay, be the zeros of F except 1. Since |ajas - - a,|=1 and
none of them lies on unit circle, it follows that at least one of the roots is larger than 1
in absolute value. Without loss of generality suppose |a;| > 1 and let

g(x) = 2" + by 12" 4+ bz + by

be the polynommial with roots 1, a2, as,- -+, ay. Then,

F(z) =(x — an)g(x)
=" 4 (bp1 — a1)a" + (bp—2 = bpor01)2™ ™t -+ (bo — b))z — boen

Thus we get b1 —a; = =2, —bpa; =1, and 0 = b1 —brag for 1 <k <n—1. Then
we have
lbn1—an|=2=1+0+---+0+1
L+ |b”_2 - bn—lal‘ + |bn—3 - bn—2a1| +-- |b00[1‘
L4 b1 llar] = [ba_a| + [ba_allar] = |ba_s| + -+ |b1]|ea| — |bo| + [bo]|ev |
L+ |bp—1] + (laa| = D)([bn—1] + -+ + [b1] + [bo])

AV

On the other hand, |b,—1 — a1| < |bp—1] + ||, so
|br—1| + lar| = 1+ [bn—1| + (Jea| = 1)([brn-1| + -+ -+ [b1] + [bo])

and therefore
|br_1] + -+ |b1| + bo| <1

Then, for any complex number « with |a| > 1, we have

lg(a)| = @™ 4+ bp_10™ 4 by 0™ 2 4 - 4 by + by

> laf™ = bn-1lla]" ™" = [buz|la]" ™ = - = |blla| — |bo]
> o™ = laf"(|ba—1| + -+ [ba] + [bo])
= la[*(1 = [bp—af =+ = [b2] = |bo]) = 0



And so « cannot be a zero. It follows that all the zeros of g is not larger than one in
absolute value. This completes the proof of the claim, because 1 is the only zero of g

on unit circle, and the other n — 1 zeros of g are inside the unit circle. O

Now, let’s go back to our orginial problem and see how we can prove f is irreducible
using this claim. Suppose that f(z) = p(z)q(z), where p and ¢ are integer polynomials.
Since f has only one zero not in interior of the unit circle, one of the polynomials p,q has
all its zeros strictly inside the unit circle. Suppose that z1,--- , 2z are the zeros of p, and
|z1], -+ 5|z < 1. Since f(0) = 1, p(0) is a nonzero integer, but |p(0)| = |z1--- 2| < 1,
which leads contradiction. Therefore f is irreducible over integers. Then f is irreducible

over rationals by Gauss’s lemma, which states that

If a polynomial with integer coefficients is irreducible over the integers, then it

is also irreducible if it is considered as a polynomial over the rationals.



