
Proof. Let f(x) = xn − xn−1 − · · · − x − 1, F (x) = (x − 1)f(x) = xn+1 − 2xn + 1. Treat

them as polynomials defined on complex plane C.

Claim. Exactly one complex zero of f satisfies |z| > 1, and the other n − 1 zeros of f

satisfy |z| < 1.

Proof. It is equivalent to show that F has exactly one zero with |z| = 1, one with

|z| > 1, and n− 1 zeros with |z| < 1. Let’s first prove that there is exactly one root of

F with |z| = 1. If root z of F has absolute value 1, then we have that

2zn = zn+1 + 1

thus

2 = 2|zn| = |zn+1 + 1| ≤ |z|n+1 + 1 = 2

This ineqaulity only holds when |zn+1 + 1| = |zn+1|+ 1, in other words, zn+1 = 1. But

since F (z) = 0, zn = zn+1+1
2 = 1. Dividing zn+1 = 1 by equation obtained just before,

we get z = 1. So 1 is the only zero of F lies on the unit circle.

Let’s denote with α1, α2, · · · , αn be the zeros of F except 1. Since |α1α2 · · ·αn|=1 and

none of them lies on unit circle, it follows that at least one of the roots is larger than 1

in absolute value. Without loss of generality suppose |α1| > 1 and let

g(x) = xn + bn−1x
n−1 + · · ·+ b1x+ b0

be the polynommial with roots 1, α2, α3, · · · , αn. Then,

F (x) =(x− α1)g(x)

=xn+1 + (bn−1 − α1)xn + (bn−2 − bn−1α1)xn−1 + · · ·+ (b0 − b1α1)x− b0α1

Thus we get bn−1−α1 = −2, −b0α1 = 1, and 0 = bk−1− bkα1 for 1 ≤ k ≤ n− 1. Then

we have

|bn−1 − α1| = 2 = 1 + 0 + · · ·+ 0 + 1

= 1 + |bn−2 − bn−1α1|+ |bn−3 − bn−2α1|+ · · ·+ |b0α1|

≥ 1 + |bn−1||α1| − |bn−2|+ |bn−2||α1| − |bn−3|+ · · ·+ |b1||α1| − |b0|+ |b0||α1|

= 1 + |bn−1|+ (|α1| − 1)(|bn−1|+ · · ·+ |b1|+ |b0|)

On the other hand, |bn−1 − α1| ≤ |bn−1|+ |α1|, so

|bn−1|+ |α1| ≥ 1 + |bn−1|+ (|α1| − 1)(|bn−1|+ · · ·+ |b1|+ |b0|)

and therefore

|bn−1|+ · · ·+ |b1|+ |b0| ≤ 1

Then, for any complex number α with |α| > 1 , we have

|g(α)| = |αn + bn−1α
n−1 + bn−2α

n−2 + · · ·+ b1α+ b0|

≥ |α|n − |bn−1||α|n−1 − |bn−2||α|n−2 − · · · − |b1||α| − |b0|

> |α|n − |α|n(|bn−1|+ · · ·+ |b1|+ |b0|)

= |α|n(1− |bn−1| − · · · − |b1| − |b0|) ≥ 0
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And so α cannot be a zero. It follows that all the zeros of g is not larger than one in

absolute value. This completes the proof of the claim, because 1 is the only zero of g

on unit circle, and the other n− 1 zeros of g are inside the unit circle.

Now, let’s go back to our orginial problem and see how we can prove f is irreducible

using this claim. Suppose that f(x) = p(x)q(x), where p and q are integer polynomials.

Since f has only one zero not in interior of the unit circle, one of the polynomials p,q has

all its zeros strictly inside the unit circle. Suppose that z1, · · · , zk are the zeros of p, and

|z1|, · · · , |zk| < 1. Since f(0) = 1, p(0) is a nonzero integer, but |p(0)| = |z1 · · · zk| < 1,

which leads contradiction. Therefore f is irreducible over integers. Then f is irreducible

over rationals by Gauss’s lemma, which states that

If a polynomial with integer coefficients is irreducible over the integers, then it

is also irreducible if it is considered as a polynomial over the rationals.
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