Proof. Let $f(x) = x^n - x^{n-1} - \cdots - x - 1$, $F(x) = (x-1)f(x) = x^{n+1} - 2x^n + 1$. Treat them as polynomials defined on complex plane **C**.

Claim. Exactly one complex zero of f satisfies |z| > 1, and the other n - 1 zeros of f satisfy |z| < 1.

Proof. It is equivalent to show that F has exactly one zero with |z| = 1, one with |z| > 1, and n - 1 zeros with |z| < 1. Let's first prove that there is exactly one root of F with |z| = 1. If root z of F has absolute value 1, then we have that

$$2z^n = z^{n+1} + 1$$

thus

$$2 = 2|z^{n}| = |z^{n+1} + 1| \le |z|^{n+1} + 1 = 2$$

This inequality only holds when $|z^{n+1}+1| = |z^{n+1}| + 1$, in other words, $z^{n+1} = 1$. But since F(z) = 0, $z^n = \frac{z^{n+1}+1}{2} = 1$. Dividing $z^{n+1} = 1$ by equation obtained just before, we get z = 1. So 1 is the only zero of F lies on the unit circle.

Let's denote with $\alpha_1, \alpha_2, \dots, \alpha_n$ be the zeros of F except 1. Since $|\alpha_1 \alpha_2 \cdots \alpha_n| = 1$ and none of them lies on unit circle, it follows that at least one of the roots is larger than 1 in absolute value. Without loss of generality suppose $|\alpha_1| > 1$ and let

$$g(x) = x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0}$$

be the polynomial with roots $1, \alpha_2, \alpha_3, \cdots, \alpha_n$. Then,

$$F(x) = (x - \alpha_1)g(x)$$

= $x^{n+1} + (b_{n-1} - \alpha_1)x^n + (b_{n-2} - b_{n-1}\alpha_1)x^{n-1} + \dots + (b_0 - b_1\alpha_1)x - b_0\alpha_1$

Thus we get $b_{n-1} - \alpha_1 = -2$, $-b_0 \alpha_1 = 1$, and $0 = b_{k-1} - b_k \alpha_1$ for $1 \le k \le n-1$. Then we have

$$\begin{aligned} |b_{n-1} - \alpha_1| &= 2 = 1 + 0 + \dots + 0 + 1 \\ &= 1 + |b_{n-2} - b_{n-1}\alpha_1| + |b_{n-3} - b_{n-2}\alpha_1| + \dots + |b_0\alpha_1| \\ &\geq 1 + |b_{n-1}||\alpha_1| - |b_{n-2}| + |b_{n-2}||\alpha_1| - |b_{n-3}| + \dots + |b_1||\alpha_1| - |b_0| + |b_0||\alpha_1| \\ &= 1 + |b_{n-1}| + (|\alpha_1| - 1)(|b_{n-1}| + \dots + |b_1| + |b_0|) \end{aligned}$$

On the other hand, $|b_{n-1} - \alpha_1| \leq |b_{n-1}| + |\alpha_1|$, so

$$|b_{n-1}| + |\alpha_1| \ge 1 + |b_{n-1}| + (|\alpha_1| - 1)(|b_{n-1}| + \dots + |b_1| + |b_0|)$$

and therefore

$$|b_{n-1}| + \dots + |b_1| + |b_0| \le 1$$

Then, for any complex number α with $|\alpha| > 1$, we have

$$|g(\alpha)| = |\alpha^{n} + b_{n-1}\alpha^{n-1} + b_{n-2}\alpha^{n-2} + \dots + b_{1}\alpha + b_{0}|$$

$$\geq |\alpha|^{n} - |b_{n-1}||\alpha|^{n-1} - |b_{n-2}||\alpha|^{n-2} - \dots - |b_{1}||\alpha| - |b_{0}|$$

$$\geq |\alpha|^{n} - |\alpha|^{n}(|b_{n-1}| + \dots + |b_{1}| + |b_{0}|)$$

$$= |\alpha|^{n}(1 - |b_{n-1}| - \dots - |b_{1}| - |b_{0}|) \geq 0$$

And so α cannot be a zero. It follows that all the zeros of g is not larger than one in absolute value. This completes the proof of the claim, because 1 is the only zero of g on unit circle, and the other n-1 zeros of g are inside the unit circle.

Now, let's go back to our orginial problem and see how we can prove f is irreducible using this claim. Suppose that f(x) = p(x)q(x), where p and q are integer polynomials. Since f has only one zero not in interior of the unit circle, one of the polynomials p,q has all its zeros strictly inside the unit circle. Suppose that z_1, \dots, z_k are the zeros of p, and $|z_1|, \dots, |z_k| < 1$. Since f(0) = 1, p(0) is a nonzero integer, but $|p(0)| = |z_1 \dots z_k| < 1$, which leads contradiction. Therefore f is irreducible over integers. Then f is irreducible over rationals by Gauss's lemma, which states that

If a polynomial with integer coefficients is irreducible over the integers, then it is also irreducible if it is considered as a polynomial over the rationals.