Proof. Let $f(x)=x^{n}-x^{n-1}-\cdots-x-1, F(x)=(x-1) f(x)=x^{n+1}-2 x^{n}+1$. Treat them as polynomials defined on complex plane \mathbf{C}.

Claim. Exactly one complex zero of f satisfies $|z|>1$, and the other $n-1$ zeros of f satisfy $|z|<1$.

Proof. It is equivalent to show that F has exactly one zero with $|z|=1$, one with $|z|>1$, and $n-1$ zeros with $|z|<1$. Let's first prove that there is exactly one root of F with $|z|=1$. If root z of F has absolute value 1 , then we have that

$$
2 z^{n}=z^{n+1}+1
$$

thus

$$
2=2\left|z^{n}\right|=\left|z^{n+1}+1\right| \leq|z|^{n+1}+1=2
$$

This ineqaulity only holds when $\left|z^{n+1}+1\right|=\left|z^{n+1}\right|+1$, in other words, $z^{n+1}=1$. But since $F(z)=0, z^{n}=\frac{z^{n+1}+1}{2}=1$. Dividing $z^{n+1}=1$ by equation obtained just before, we get $z=1$. So 1 is the only zero of F lies on the unit circle.
Let's denote with $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ be the zeros of F except 1 . Since $\left|\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right|=1$ and none of them lies on unit circle, it follows that at least one of the roots is larger than 1 in absolute value. Without loss of generality suppose $\left|\alpha_{1}\right|>1$ and let

$$
g(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

be the polynommial with roots $1, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{n}$. Then,

$$
\begin{aligned}
F(x) & =\left(x-\alpha_{1}\right) g(x) \\
& =x^{n+1}+\left(b_{n-1}-\alpha_{1}\right) x^{n}+\left(b_{n-2}-b_{n-1} \alpha_{1}\right) x^{n-1}+\cdots+\left(b_{0}-b_{1} \alpha_{1}\right) x-b_{0} \alpha_{1}
\end{aligned}
$$

Thus we get $b_{n-1}-\alpha_{1}=-2,-b_{0} \alpha_{1}=1$, and $0=b_{k-1}-b_{k} \alpha_{1}$ for $1 \leq k \leq n-1$. Then we have

$$
\begin{aligned}
\left|b_{n-1}-\alpha_{1}\right| & =2=1+0+\cdots+0+1 \\
& =1+\left|b_{n-2}-b_{n-1} \alpha_{1}\right|+\left|b_{n-3}-b_{n-2} \alpha_{1}\right|+\cdots+\left|b_{0} \alpha_{1}\right| \\
& \geq 1+\left|b_{n-1}\right|\left|\alpha_{1}\right|-\left|b_{n-2}\right|+\left|b_{n-2}\right|\left|\alpha_{1}\right|-\left|b_{n-3}\right|+\cdots+\left|b_{1}\right|\left|\alpha_{1}\right|-\left|b_{0}\right|+\left|b_{0}\right|\left|\alpha_{1}\right| \\
& =1+\left|b_{n-1}\right|+\left(\left|\alpha_{1}\right|-1\right)\left(\left|b_{n-1}\right|+\cdots+\left|b_{1}\right|+\left|b_{0}\right|\right)
\end{aligned}
$$

On the other hand, $\left|b_{n-1}-\alpha_{1}\right| \leq\left|b_{n-1}\right|+\left|\alpha_{1}\right|$, so

$$
\left|b_{n-1}\right|+\left|\alpha_{1}\right| \geq 1+\left|b_{n-1}\right|+\left(\left|\alpha_{1}\right|-1\right)\left(\left|b_{n-1}\right|+\cdots+\left|b_{1}\right|+\left|b_{0}\right|\right)
$$

and therefore

$$
\left|b_{n-1}\right|+\cdots+\left|b_{1}\right|+\left|b_{0}\right| \leq 1
$$

Then, for any complex number α with $|\alpha|>1$, we have

$$
\begin{aligned}
|g(\alpha)| & =\left|\alpha^{n}+b_{n-1} \alpha^{n-1}+b_{n-2} \alpha^{n-2}+\cdots+b_{1} \alpha+b_{0}\right| \\
& \geq|\alpha|^{n}-\left|b_{n-1}\right||\alpha|^{n-1}-\left|b_{n-2}\right||\alpha|^{n-2}-\cdots-\left|b_{1}\right||\alpha|-\left|b_{0}\right| \\
& >|\alpha|^{n}-|\alpha|^{n}\left(\left|b_{n-1}\right|+\cdots+\left|b_{1}\right|+\left|b_{0}\right|\right) \\
& =|\alpha|^{n}\left(1-\left|b_{n-1}\right|-\cdots-\left|b_{1}\right|-\left|b_{0}\right|\right) \geq 0
\end{aligned}
$$

And so α cannot be a zero. It follows that all the zeros of g is not larger than one in absolute value. This completes the proof of the claim, because 1 is the only zero of g on unit circle, and the other $n-1$ zeros of g are inside the unit circle.

Now, let's go back to our orginial problem and see how we can prove f is irreducible using this claim. Suppose that $f(x)=p(x) q(x)$, where p and q are integer polynomials. Since f has only one zero not in interior of the unit circle, one of the polynomials p, q has all its zeros strictly inside the unit circle. Suppose that z_{1}, \cdots, z_{k} are the zeros of p, and $\left|z_{1}\right|, \cdots,\left|z_{k}\right|<1$. Since $f(0)=1, p(0)$ is a nonzero integer, but $|p(0)|=\left|z_{1} \cdots z_{k}\right|<1$, which leads contradiction. Therefore f is irreducible over integers. Then f is irreducible over rationals by Gauss's lemma, which states that

If a polynomial with integer coefficients is irreducible over the integers, then it is also irreducible if it is considered as a polynomial over the rationals.

