Two matrices

Minjae Park

POW2011-15. Let n be a positive integer. Let $\omega=\cos (2 \pi / n)+i \sin (2 \pi / n)$. Suppose that A, B are two complex square matrices such that $A B=\omega B A$. Prove that $(A+B)^{n}=A^{n}+B^{n}$.

Solution. Let's prove more general result: $(p A+q B)^{n}=p^{n} A^{n}+q^{n} B^{n}$ for any complex numbers p, q. ($p=q=1$ in the original problem.)

Remark that $(p A+q B)^{n}=\sum_{k=0}^{n} c_{k} p^{k} q^{n-k} A^{k} B^{n-k}$ for some constants c_{i} with $c_{0}=c_{n}=1$, which do not depend on the choice of A, B whenever $A B=$ $\omega B A$. Let's choose specific matrices,

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right)_{n \times n}, B=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & \omega & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \omega^{n-2} & 0 \\
0 & 0 & \cdots & 0 & \omega^{n-1}
\end{array}\right)_{n \times n}
$$

thus A is the elementary row matrix which inserts the top row to the bottom, or the elementary column matrix which inserts the rightmost column to the leftmost. It is clear that $A B=\omega B A$.

On the other hand, the characteristic polynomial of $p A+q B$ can be deduced from the bottom row as:

$$
\begin{aligned}
\rho(\lambda) & =\operatorname{det}(\lambda I-(p A+q B)) \\
& =(-1)^{n-1}(-p)(-p)^{n-1}+\left(\lambda-q \omega^{n-1}\right)(\lambda-q) \cdots\left(\lambda-q \omega^{n-2}\right) \\
& =-p^{n}+\left(\lambda^{n}-q^{n}\right)=\lambda^{n}-\left(p^{n}+q^{n}\right)
\end{aligned}
$$

By the Caley-Hamilton theorem, $\rho(p A+q B)=0$, hence $(p A+q B)^{n}=$ $\left(p^{n}+q^{n}\right) I=(p A)^{n}+(q B)^{n}$. This implies that $c_{i}=0$ for all $1 \leq i \leq n-1$ as we desired.

