Proof. It is clear that $(A+B)^{m}=\sum_{k=0}^{m} c_{k}^{m} B^{k} A^{m-k}$ where the scalars c_{k}^{m} only depend on k and m. By some computing c_{k}^{m} for small numbers, we can guess that

$$
c_{k}^{m}=\frac{\phi_{m}}{\phi_{k} \phi_{m-k}}
$$

where ϕ_{k} 's are given by

$$
\phi_{k}=\prod_{i=1}^{k}\left(1+\cdots+\omega^{i-1}\right)
$$

(Assume $\phi_{0}=1$)
Claim. When c_{k}^{m} 's are defined from the equation $(A+B)^{m}=\sum_{k=0}^{m} c_{k}^{m} B^{k} A^{m-k}$, for all m, we get $c_{0}^{m}=c_{m}^{m}=1$ and for $k=1, \cdots, m-1$,

$$
c_{k}^{m}=\frac{\phi_{m}}{\phi_{k} \phi_{m-k}}
$$

Proof. First of all, we can easily compute that $c_{0}^{m}=c_{m}^{m}=1$ for all m. So it is enough to compute for $k=1, \cdots, m-1$.
By computing $(A+B)^{m+1}=(A+B) \sum_{k=0}^{m} c_{k}^{m} B^{k} A^{m-k}$, we get

$$
c_{k}^{m+1}=\omega^{k} c_{k}^{m}+c_{k-1}^{m}
$$

for $k=1, \cdots, m$. Now use induction on m :
$m=0,1$: Obvious because we showed all the possible cases already (either $k=0$ or m) Assume the equation holds on $m=l$. Then for all $k=1, \cdots, l$,

$$
\begin{aligned}
c_{k}^{l+1} & =\omega^{k} c_{k}^{l}+c_{k-1}^{l} \\
& =\omega^{k} \frac{\phi_{l}}{\phi_{k} \phi_{l-k}}+\frac{\phi_{l}}{\phi_{k-1} \phi_{l-k+1}} \\
& =\frac{\phi_{l}}{\phi_{k} \phi_{l-k+1}}\left(\omega^{k} \frac{\phi_{l-k+1}}{\phi_{l-k}}+\frac{\phi_{k}}{\phi_{k-1}}\right) \\
& =\frac{\phi_{l}}{\phi_{k} \phi_{l-k+1}}\left\{\omega^{k}\left(1+\cdots+\omega^{l-k}\right)+\left(1+\cdots+\omega^{k-1}\right)\right\} \\
& =\frac{\phi_{l}}{\phi_{k} \phi_{l-k+1}}\left(1+\cdots+\omega^{l}\right)=\frac{\phi_{l+1}}{\phi_{k} \phi_{l-k+1}}
\end{aligned}
$$

Therefore, by induction, claim holds for all m and $k=0,1, \cdots, m$.
We know that $\omega^{i}-1 \neq 0$ for $i=1, \cdots, n-1$. Thus $1+\omega+\cdots+\omega^{i-1} \neq 0$ for $i=1, \cdots, n-1$. It means that $\phi_{i} \neq 0$ for $i=1, \cdots, n-1$. But $\phi_{n}=0$, since $(\omega-1)\left(1+\omega+\cdots+\omega^{n-1}\right)=$ $\omega^{n-1}=0$ and $\omega \neq 1$. Therefore, for $k=1, \cdots, n-1$, by using claim,

$$
c_{k}^{n}=\frac{\phi_{n}}{\phi_{k} \phi_{n-k}}=\frac{0}{\phi_{k} \phi_{n-k}}=0
$$

and $c_{0}^{n}=c_{n}^{n}=1$. Consequently, we get

$$
(A+B)^{n}=\sum_{k=0}^{n} c_{k}^{n} B^{k} A^{n-k}=A^{n}+B^{n}
$$

