POW 2010-17 Attempt

Jeong Jinmyeong

October 31, 2010

We are to show $\operatorname{tr}\left((A B)^{2}\right)-\operatorname{tr}\left(A^{2} B^{2}\right) \leq 0$ for two Hermitian matrices A and B. Let A and B be two Hermitian matrices. Then $A^{\dagger}=A, B^{\dagger}=B$ by definition, where A^{\dagger} denotes the complex conjugate of A.

We have

$$
\begin{gathered}
\operatorname{tr}(X+Y)=\operatorname{tr}(X)+\operatorname{tr}(Y) \\
\operatorname{tr}(X Y)=\operatorname{tr}(Y X)
\end{gathered}
$$

for any square matrices X, Y.

$$
\begin{aligned}
\operatorname{tr}\left(A^{2} B^{2}\right) & =\operatorname{tr}(A A B B) \\
& =\operatorname{tr}((A A B) B)=\operatorname{tr}(B A A B)=\operatorname{tr}((B A)(A B)) \\
& =\operatorname{tr}(A(A B B))=\operatorname{tr}(A B B A)=\operatorname{tr}((A B)(B A)) \\
\operatorname{tr}\left((A B)^{2}\right) & =\operatorname{tr}(A B A B) \\
& =\operatorname{tr}(A(B A B))=\operatorname{tr}((B A B) A) \\
& =\operatorname{tr}\left((B A)^{2}\right) .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\operatorname{tr}\left((A B)^{2}\right)-\operatorname{tr}\left(A^{2} B^{2}\right)= & \frac{1}{2}\left(\operatorname{tr}\left((A B)^{2}\right)-\operatorname{tr}((A B)(B A))\right. \\
& -\operatorname{tr}((B A)(A B))+\operatorname{tr}\left((B A)^{2}\right) \\
= & \frac{1}{2} \operatorname{tr}\left((A B)^{2}-(A B)(B A)-(B A)(A B)+(B A)^{2}\right) \\
= & \frac{1}{2} \operatorname{tr}\left((A B-B A)^{2}\right) .
\end{aligned}
$$

Now we look at $A B-B A$, where A and B are Hermitian.

$$
\begin{aligned}
(A B-B A)^{\dagger} & =(A B)^{\dagger}-(B A)^{\dagger} \\
& =B^{\dagger} A^{\dagger}-A^{\dagger} B^{\dagger} \\
& =B A-A B \\
& =-(A B-B A) .
\end{aligned}
$$

Therefore, $A B-B A$ is a skew-Hermitian matrix, eigenvalues of $A B-B A$ are pure imaginary numbers, eigenvalues of $(A B-B A)^{2}$ are nonpositive real. This gives us

$$
\operatorname{tr}\left((A B-B A)^{2}\right)=\sum\left(\text { eigenvalues of }(A B-B A)^{2}\right) \leq 0
$$

which finishes our proof.

