Solution: POW 2010-18

수리과학과 김치헌

Define $g(x) = e^x f(x)$. Then, $g'(x) = e^x (f(x) + f'(x))$. So it suffices to prove the following:

Let g be a differentiable function satisfying $\lim_{x\to\infty} \frac{g'(x)}{e^x} = 1$. Then, $\lim_{x\to\infty} \frac{g(x)}{e^x} = 1$.

Remind L'hopital's rule in Calculus I. The problem above has the same form with that, thus proving g(x) goes to infinity as $x \to \infty$ is enough.

We know $\frac{g'(x)}{e^x} \to 1$ as $x \to \infty$. So, there is a number M such that

$$\frac{1}{2} < \frac{g'(x)}{e^x}$$

for any x > M. So, for such x,

$$g(x) = \int_{M}^{x} g'(t)dt + g(M)$$

>
$$\int_{M}^{x} \frac{e^{t}}{2}dt + g(M)$$

=
$$\frac{e^{x}}{2} + \left(g(M) - \frac{e^{M}}{2}\right)$$

Hence g(x) goes to infinity because $\frac{e^x}{2}$ does so.