Solution: POW 2010-18

수리과학과 김치헌

Define $g(x)=e^{x} f(x)$. Then, $g^{\prime}(x)=e^{x}\left(f(x)+f^{\prime}(x)\right)$. So it suffices to prove the following:

Let g be a differentiable function satisfying $\lim _{x \rightarrow \infty} \frac{g^{\prime}(x)}{e^{x}}=1$. Then, $\lim _{x \rightarrow \infty} \frac{g(x)}{e^{x}}=1$.

Remind L'hopital's rule in Calculus I. The problem above has the same form with that, thus proving $g(x)$ goes to infinity as $x \rightarrow \infty$ is enough.

We know $\frac{g^{\prime}(x)}{e^{x}} \rightarrow 1$ as $x \rightarrow \infty$. So, there is a number M such that

$$
\frac{1}{2}<\frac{g^{\prime}(x)}{e^{x}}
$$

for any $x>M$. So, for such x,

$$
\begin{aligned}
g(x) & =\int_{M}^{x} g^{\prime}(t) d t+g(M) \\
& >\int_{M}^{x} \frac{e^{t}}{2} d t+g(M) \\
& =\frac{e^{x}}{2}+\left(g(M)-\frac{e^{M}}{2}\right) .
\end{aligned}
$$

Hence $g(x)$ goes to infinity because $\frac{e^{x}}{2}$ does so.

