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We need to show
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is suffice to show

given function of n is constant over natural numbers and zero. We are going
to denote N as set of natural numbers and zero for convenience.
Let F(n,k) be defined by
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Therefore,
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Sum this equation by all integers k to get
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= klim G(n,k) =0, since F(n,k) =0 for k > n.
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Therefore, >, F(n, k) is constant over n, resulting
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Note : This proof is guided by the book ’A=B’ by Marko Petkovsek, Herbert
Wilf and Doron Zeilberger, and G(n, k) is derived using MAPLE.



