POW 2010-12 Attempt

Jeong Jinmyeong

September 4, 2010

Let A be a $n \times n$ matrix and J be a $n \times n$ diagonal matrix. Denote diagonal entries of J by $x_{1}, x_{2}, \ldots, x_{n}$ such that $x_{i} \in\{-1,1\}$ for $i=1,2, \ldots, n$.

Our goal is to show constructing J by determining x_{i} such that $\operatorname{det}(A+$ $J)$ is nonzero is possible. Then there exist an invertible matrix $A+J$. We show such a construction is possible by actually constructing such J by induction.

Define B_{k} by upper-left submatrix of $A+J$ of size $k \times k$. i.e., (i, j) th entry of $B_{k}(i, j=1,2, \ldots, k)$ is equal to (i, j) th entry of $A+J$. We can observe B_{1} is 1×1 matrix and $B_{n}=A+J$.

First we observe a base case. $B_{1}=\left(a_{11}+x_{1}\right)$ where $A=\left\{a_{i j}\right\}$. By Fundamental Theorem of Algebra, $a_{11}+x_{1}=0$, a polynomial in x_{1} of degree 1 , has at most one solution. Thus, at least one of $x_{1} \in\{-1,1\}$ makes $a_{11}+x_{1}$ nonzero, so that $\operatorname{det} B_{1} \neq 0$. Fix x_{1} so that $\operatorname{det} B_{1} \neq 0$.

Assume $\operatorname{det} B_{i-1} \neq 0$. Then

$$
\operatorname{det} B_{i}=\left(a_{i i}+x_{i}\right) \operatorname{det} B_{i-1}+C
$$

where C is constant respect to x_{i}. Again, righthand side of above equation is a polynomial in x_{i} of degree 1 . By FTA, this polynomial has at most one solution, thus we can choose $x_{i}=1$ or $x_{i}=-1$ so that $\operatorname{det} B_{i} \neq 0$. Fix(substitute) x_{i} so that $\operatorname{det} B_{i} \neq 0$.

By induction step, we could construct B_{n} such that $\operatorname{det} B_{n}=\operatorname{det}(A+$ $J) \neq 0$ so that $A+J$ is invertible and each diagonal entry of J is 1 or -1 .

