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The problem is to prove the identity

(0.1)

n∑
k=0

(−1)k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
= (−4)n

for all positive integers n. Our plan of attack is to use the Cauchy integral formula.
Let us begin by observing that by a simple bijection argument, we can rewrite

the product of binomial coefficients as :

(0.2)

(
2n+ 2k

n+ k

)(
n+ k

2k

)
=

(
2n+ 2k

2k

)(
2n

k

)
Indeed, both sides could be interpreted as choosing out of 2n+ 2k balls 2k balls to
be put in one box and n+ k − 2k = n− k balls to be put in another box.

Using this, and multiplying both sides by (−1)n, it suffices to show

(0.3)

n∑
k=0

(−1)n−k

(
2n+ 2k

2k

)(
2n

n− k

)
= 4n.

Note that
(

2n+2k
2k

)
is the coefficient in front of z2k in (1+z)2n+2k. By the Cauchy

integral formula, we have

(0.4)

(
2n+ 2k

2k

)
=

1

2πi

∮
Γ

(1 + z)2n+2k

z2k+1
dz

where Γ is a small closed contour surrounding 0.
Using (0.2), (0.4), and we can rewrite the LHS of (0.3) as

(0.5)
1

2πi

∮
Γ

(−1)n−k (1 + z)2n+2k

z2k+1

(
2n

n− k

)
dz.

Replacing the index n− k by k, we get

(0.5) =
1

2πi

n∑
k=0

∮
Γ

(−1)k
(1 + z)4n−2k

z2n−2k+1

(
2n

k

)
dz

=
1

2πi

∮
Γ

(1 + z)4n

z2n+1

n∑
k=0

(−1)k
(

2n

k

)(
1 + z

z

)−2k

dz.

=
1

2πi

∮
Γ

(1 + z)4n

z2n+1

n∑
k=0

(−1)k
(

2n

k

)(
z

1 + z

)2k

dz.

Now let us look at the sum on the last line. If the sum were over indices from k = 0
to k = 2n, then it will be equal to (1 − (z/1 + z)2)2n by the binomial theorem;
however, the problem here is that the sum is only up to k = n. What saves us here
is the fact that the terms corresponding to k > n does not contribute to the Cauchy
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integral. To see this, note that we are dividing by z2n+1, and in a term with k > n
we have z2k in the numerator, and 2k > 2n + 1. The factor involving powers of
1 + z does not have a residue at 0, so as a consequence the term with k > n has no
residue at 0. (In fact, it is holomorphic on the whole complex plane) Therefore, we
can harmlessly add the remaining terms from k = n+ 1 to k = 2n, and we are led
to

(0.5) =
1

2πi

∮
Γ

(1 + z)4n

z2n+1

2n∑
k=0

(−1)k
(

2n

k

)(
z

1 + z

)2k

dz

=
1

2πi

∮
Γ

(1 + z)4n

z2n+1

(
1 −

(
z

1 + z

)2
)2n

dz

=
1

2πi

∮
Γ

(1 + z)4n

z2n+1

(
1 + 2z

(1 + z)2

)2n

dz

=
1

2πi

∮
Γ

(1 + 2z)2n

z2n+1
dz

= 22n = 4n,

where the last line is again by the Cauchy integral formula. This proves (0.3).


