PROVING A BINOMIAL IDENTITY USING THE CAUCHY THEOREM

SUNG-JIN OH

The problem is to prove the identity

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{2 n+2 k}{n+k}\binom{n+k}{2 k}=(-4)^{n} \tag{0.1}
\end{equation*}
$$

for all positive integers n. Our plan of attack is to use the Cauchy integral formula.
Let us begin by observing that by a simple bijection argument, we can rewrite the product of binomial coefficients as :

$$
\begin{equation*}
\binom{2 n+2 k}{n+k}\binom{n+k}{2 k}=\binom{2 n+2 k}{2 k}\binom{2 n}{k} \tag{0.2}
\end{equation*}
$$

Indeed, both sides could be interpreted as choosing out of $2 n+2 k$ balls $2 k$ balls to be put in one box and $n+k-2 k=n-k$ balls to be put in another box.

Using this, and multiplying both sides by $(-1)^{n}$, it suffices to show

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{2 n+2 k}{2 k}\binom{2 n}{n-k}=4^{n} \tag{0.3}
\end{equation*}
$$

Note that $\binom{2 n+2 k}{2 k}$ is the coefficient in front of $z^{2 k}$ in $(1+z)^{2 n+2 k}$. By the Cauchy integral formula, we have

$$
\begin{equation*}
\binom{2 n+2 k}{2 k}=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(1+z)^{2 n+2 k}}{z^{2 k+1}} \mathrm{~d} z \tag{0.4}
\end{equation*}
$$

where Γ is a small closed contour surrounding 0 .
Using (0.2), (0.4), and we can rewrite the LHS of (0.3) as

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\Gamma}(-1)^{n-k} \frac{(1+z)^{2 n+2 k}}{z^{2 k+1}}\binom{2 n}{n-k} \mathrm{~d} z . \tag{0.5}
\end{equation*}
$$

Replacing the index $n-k$ by k, we get

$$
\begin{aligned}
(0.5) & =\frac{1}{2 \pi i} \sum_{k=0}^{n} \oint_{\Gamma}(-1)^{k} \frac{(1+z)^{4 n-2 k}}{z^{2 n-2 k+1}}\binom{2 n}{k} \mathrm{~d} z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(1+z)^{4 n}}{z^{2 n+1}} \sum_{k=0}^{n}(-1)^{k}\binom{2 n}{k}\left(\frac{1+z}{z}\right)^{-2 k} \mathrm{~d} z . \\
& =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(1+z)^{4 n}}{z^{2 n+1}} \sum_{k=0}^{n}(-1)^{k}\binom{2 n}{k}\left(\frac{z}{1+z}\right)^{2 k} \mathrm{~d} z .
\end{aligned}
$$

Now let us look at the sum on the last line. If the sum were over indices from $k=0$ to $k=2 n$, then it will be equal to $\left(1-(z / 1+z)^{2}\right)^{2 n}$ by the binomial theorem; however, the problem here is that the sum is only up to $k=n$. What saves us here is the fact that the terms corresponding to $k>n$ does not contribute to the Cauchy
integral. To see this, note that we are dividing by $z^{2 n+1}$, and in a term with $k>n$ we have $z^{2 k}$ in the numerator, and $2 k>2 n+1$. The factor involving powers of $1+z$ does not have a residue at 0 , so as a consequence the term with $k>n$ has no residue at 0 . (In fact, it is holomorphic on the whole complex plane) Therefore, we can harmlessly add the remaining terms from $k=n+1$ to $k=2 n$, and we are led to

$$
\begin{aligned}
(0.5) & =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(1+z)^{4 n}}{z^{2 n+1}} \sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}\left(\frac{z}{1+z}\right)^{2 k} \mathrm{~d} z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(1+z)^{4 n}}{z^{2 n+1}}\left(1-\left(\frac{z}{1+z}\right)^{2}\right)^{2 n} \mathrm{~d} z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(1+z)^{4 n}}{z^{2 n+1}}\left(\frac{1+2 z}{(1+z)^{2}}\right)^{2 n} \mathrm{~d} z \\
& =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{(1+2 z)^{2 n}}{z^{2 n+1}} \mathrm{~d} z \\
& =2^{2 n}=4^{n}
\end{aligned}
$$

where the last line is again by the Cauchy integral formula. This proves (0.3).

