PROVING A BINOMIAL IDENTITY USING THE CAUCHY
THEOREM
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The problem is to prove the identity
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for all positive integers n. Our plan of attack is to use the Cauchy integral formula.

Let us begin by observing that by a simple bijection argument, we can rewrite
the product of binomial coefficients as :
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Indeed, both sides could be interpreted as choosing out of 2n + 2k balls 2k balls to

be put in one box and n + k — 2k = n — k balls to be put in another box.
Using this, and multiplying both sides by (—1)", it suffices to show
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Note that (*"};?") is the coefficient in front of z2* in (1+2)?"+2¥. By the Cauchy
integral formula, we have
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where I' is a small closed contour surrounding 0.
Using (0.2), (0.4), and we can rewrite the LHS of (0.3) as
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Replacing the index n — k by k, we get
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Now let us look at the sum on the last line. If the sum were over indices from k& = 0
to k = 2n, then it will be equal to (1 — (2/1 + 2)?)?" by the binomial theorem;
however, the problem here is that the sum is only up to k¥ = n. What saves us here

is the fact that the terms corresponding to k > n does not contribute to the Cauchy
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integral. To see this, note that we are dividing by z2"*!, and in a term with & > n

we have z2* in the numerator, and 2k > 2n + 1. The factor involving powers of
1+ z does not have a residue at 0, so as a consequence the term with & > n has no
residue at 0. (In fact, it is holomorphic on the whole complex plane) Therefore, we
can harmlessly add the remaining terms from k =n + 1 to k = 2n, and we are led

to
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where the last line is again by the Cauchy integral formula. This proves (0.3).



