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POW2010-14. Let n be a positive integer. Prove that

n∑
k=0

(−1)k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
= (−4)n

First Solution (Combinatorial Method). I will count the number of ways to
assign 0 or 1 to 2n ordered cards. First, it’s trivial that this number is exactly
same as the number of 2n-digits binary numbers, which is 22n = 4n.

Now, let’s count this number in a different way. Consider the situation that
2n ordered “dummy” cards are inserted to the original 2n cards. Then we have
4n cards overall, and I will choose 2n cards among them. The number of ways
to choose 2n cards is

(
4n
2n

)
and I will assign “1” to the selected cards, and “0” to

the others. After this selection, if I discard the dummies, then 2n-digits binary
number is obtained. To visualize this situation, I will use the following notation

a1a2 · · · a2n|b1b2 · · · b2k

where ai, bj are 0 or 1 for all i and j, to depict the situation when i-th original
card is assigned to ai (1 if selected, and 0 if not), and j-th dummy is assigned
to bj (1 if selected, and 0 if not).

It can be easily observed that some selections result the same output (as a
2n-digits binary number.) In particular, this overlap happens when I choose the
same original cards, but different dummies. For example, the two situations

010011|000111 010011|111000

will result the same output, “010011”. Moreover, there are exactly
(
6
3

)
situations

resulting “010011” which is the number of ways to choose three “1” among six
dummies. Thus, I will subtract this number of situations overlapped to other
one. To achieve this, I will discard all situations which the binary number of
“dummy part” has “10” because the only situation that does not contain “10”
in its dummy part has a form only like this.

a1a2 · · · a2n|000 · · · 111

To count the situations having “10” in their dummy parts, let’s consider the
situation

a1a2 · · · a2n|b1b2 · · · b2n−2
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and put “10” to each 2n−1 locations before and after each digits of the dummy
part. For example, the situation 0111|01 will yields the 3 situations having “10”
in their dummy parts.

0111|1001 0111|0101 0111|0110

Here, I only assign 2n − 1 “1”s among 4n − 2 cards, since I will use one
“1” to put “10”. This number can be calculated as

(
4n−2
2n−1

)
2n−1H1 (where

H stands for combination with repetition.) However, if the dummy part of
a1a2 · · · a2n|b1b2 · · · b2n−2 already contains “10”, it is overlapped by putting “10”
in another location. For instance, 0111|10 yields three situations which dummy
parts have “10”, but two of them are exactly same as 0111|1010.

Hence, I need to add the number of situations which dummy parts having
two “10”s. Similarly, think of the situation

a1a2 · · · a2n|b1b2 · · · b2n−4

and I will put two “10”s to each 2n − 3 locations before and after each digits
of the dummy part. Note that two “10”s can be inserted to the exactly same
location. This is why I used combination with repetition in the previous case.
In this situations, I only assign 2n− 2 “1”s among 4n− 4 cards since two “1”s
will be used when I insert two “10”s to the dummy part. This number can be
calculated as

(
4n−4
2n−2

)
2n−3H2. However, it also over-counts some situations which

dummy parts have three “10”s.
To obtain the actual number, we can continue these alternative adding and

subtracting. Remark that the dummy part of one situation can contain at most
n “10”s. Consequently, continuing this argument, we conclude that the whole
number of ways to assign 0 or 1 to the original 2n cards is

n∑
l=0

(−1)l
(

4n− 2l

2n− l

)
2n−2l+1Hl

By substituting k = n − l and using the fact that nHr =
(
n+r−1

r

)
, the number

is same as

n∑
k=0

(−1)n−k
(

2n+ 2k

n+ k

)
2k+1Hn−k

=

n∑
k=0

(−1)n−k
(

2n+ 2k

n+ k

)(
n+ k

n− k

)
=

n∑
k=0

(−1)n−k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
At the beginning we counted this number as 4n, so the following equation

holds.
n∑

k=0

(−1)n−k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
= 4n

Therefore, the desired identity is immediately derived. �
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Second Solution (Using Generating Function). Let’s denote [tn]f(t) ≡ fn where
f(t) be the generating function of the sequence {fi}i∈N.

Lemma 1. Let f(t) be the generating function of the sequence {fi}i∈N. Then,

∞∑
k=0

(
n+ k

2k

)
fk = [tn]

1

1− t
f(

t

(1− t)2
).

Proof. First, from the basic combinatorial identities,(
n+ k

2k

)
=

(
n+ k

n− k

)
= (−1)−k

(
−2k − 1

n− k

)
= [tn−k]

1

(1− t)2k+1

= [tn]
1

1− t

(
t

(1− t)2

)k

(1)

holds. By (1), we obtain

∞∑
k=0

(
n+ k

2k

)
fk =

∞∑
k=0

[tn]
1

1− t

(
t

(1− t)2

)k

[sk]f(s)

= [tn]
1

1− t

∞∑
k=0

[sk]f(s)

(
t

(1− t)2

)k

= [tn]
1

1− t
f(

t

(1− t)2
),

which is the desired result. �

Let’s denote an operator G, formally well-defined and satisfying G([tn]f(t)) =
f(t) where f(t) be the generating function of the sequence {fi}i∈N. Then, the
following lemma is one result of Lagrange’s Inversion Theorem.

Lemma 2 (Diagonalization Rule of Lagrange’s Inversion Theorem). Let F(t)
be any formal power series, then

G([tn]F (t)φ(t)n) =

[
F (w)

1− tφ′(w)

∣∣∣∣w = tφ(w)

]
.

I will omit the proof. The notation [f(w)|w = g(t)] is a linearization of
f(w)|w=g(t) and denotes the substitution of g(t) to every occurrence of w in
f(w) (that is, f(g(t))). In particular, w = tφ(w) is to be solved in w = w(t)
and w has to be substituted in the expression on the left of the | sign (These
notations used in Lemma 2 are borrowed from the reference).
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By the Lemma 2, the following identity can be derived.

fk ≡ (−1)k
(

2n+ 2k

n+ k

)
= (−1)n[tk]

1

tn
(1− t)2n+2k

= (−1)n[tk]
(1− t)2n

tn
((1− t)2)k

= (−1)n[tk]

[
(1− w)2n

wn

1

1 + 2t(1− w)

∣∣∣∣w = t(1− w)2
]

= (−1)n[tk]

[
(1− w)2n

wn

1− w
1− w + 2w

∣∣∣∣w = t(1− w)2
]

= (−1)n[tk]

[
(1− w)2n+1

wn(1 + w)

∣∣∣∣w = t(1− w)2
]

Thus, applying Lemma 1 results

∞∑
k=0

(−1)k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
=

∞∑
k=0

(
n+ k

2k

)
fk

=(−1)n[tn]
1

1− t

[
(1− w)2n+1

wn(1 + w)

∣∣∣∣w =
t

(1− t)2
(1− w)2

]
. (2)

Note that w = t is a solution of w = t
(1−t)2 (1−w)2. By replacing w = t to (2),

∞∑
k=0

(−1)k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
=

∞∑
k=0

(
n+ k

2k

)
fk

=(−1)n[tn]
1

1− t
(1− t)2n+1

tn(1 + t)
= (−1)n[t2n]

(1− t)2n

1 + t

=(−1)n[t2n]

((
2n

0

)
−
(

2n

1

)
t+

(
2n

2

)
t2 − · · ·

)(
1− t+ t2 − · · ·

)
=(−1)n

((
2n

0

)
+

(
2n

1

)
+

(
2n

2

)
+ · · ·+

(
2n

2n

))
=(−1)n22n = (−4)n

is obtained. Therefore, since
(
n+k
2k

)
= 0 if k > n,

n∑
k=0

(−1)k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
=

∞∑
k=0

(−1)k
(

2n+ 2k

n+ k

)(
n+ k

2k

)
= (−4)n. �
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