Upper bound
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POW2010-13. Prove that there is a constant C' such that

B
sup / sin(x? + yz)dr < C

A<BJaA
for all y.
Note that
B B y y?
sup / sin(z? 4+ yz)dr = sup / sin <(x +2)2 - > dz
A<BJaA A<BJA 2 4
yeR yER
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= sup / sin(2? — 2?)dx
A<BJA

z€R
because a translation parallel to the x-axis does not affect the supremum of the
integration.

First Solution. For a fixed number z € R, let f(z) = sin(2%—22) where z > 0.
Since sin(z? — 22) is an even function for z, this proof will show that there is a

constant C’ such that supp<a<p fAB f(z)dx < ', so if we set C' = 2C", then
zeR

B
sup/ sin(z? — 2%)dx <2 sup / flz)dzr <2C"=C
A<BJA 0<A<B

z€R z€R
holds.

Let n be the integer satisfying nm < 2% < (n+1)m. Note that f(z) vanishes if
and only if #2 — 22 = kr for some k € Z. Hence, if we denote zj, be the (k+1)th
root of f for k =0,1,---, then 22 = 2% + (k — n)7, and 29 = V22 — nw. Now
we can prove the following lemma.

Lemma. Let S, = f;:“ f(x)dz. Then |Skt1| < |Sk| for all non-negative
integer k.



Figure 1: A figure showing decreasing sequence of area |Si|.

1Ok

-1.0

Proof of Lemma. By substituting the integration with u = 22 — 22, and ap-
plying the integration by parts, we obtain
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The last equality holds for some @ € ((k — n)m, (k — n + 1)7) by the mean value
theorem for integration. Thus, by the triangle inequality,
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ISkl < 5 ( —+ +— - = —
2\ Ty Th41 Tk Th4 Ty
holds since |cosz| < 1. For a lower bound for |Sk|, we need to consider two
cases.

[Case 1] k —n is even.



In this case, f(z) is locally increasing near the point z; and decreasing near
the point 1. Consequently, Sy > 0, cos(k —n)m = 1, cos(k —n + 1)m = —1,

and
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which implies |Sy| > xk1+1'

[Case 2] k —n is odd.
In this case, f(z) is locally decreasing near the point xj and increasing near
the point 1. Consequently, Sy < 0, cos(k —n)m = —1, cos(k —n+ 1) =1,

and
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which implies |Sy| > p—
Therefore,
1
Sk1] £ —— < [ Skl
Trk41
holds for all non-negative integer k. O

Corollary. For a given number A > xq, ff f(x)dx < |So| for all B > A.

Proof of Corollary. Let k be the smallest positive integer such that z; > A
and Sy < 0. From the lemma,

B
[ @iz <o
Tk
for all B > A. Thus,

B Ty B
/A f(z)dz = /A f(z)da + / F(@)dz < Sp_1 < |So|

holds by applying the lemma again. O



By the corollary, we obtain

sup /AB fz)dx < ’/Ofﬁo f(z)dx

0<A<B

+ 10| =/0 (@) da

for a given number z € R because f does not change its sign on the interval
neither (0, x¢) nor (xg,x1). Remark that x; = /22 + (1 —n)m, so 7w < 2% < 27
by the choosing of n. Since |f(z)| <1 for all z > 0,

sup ABf(x)szAml |f(2)| dz < V2r

0<A<B

holds. The upper bound of the supremum /27 does not depend on the value
of z, 80 supp<a<p ff f(x)dx < +/27. Therefore, for a constant C = 2+/27,
zeR

B B
sup / sin(z? + ya)dr = sup / sin(z? — 22)dx

A<BJA A<BJA
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B
<2 sup / flz)dr <2vV2m =C
0<A<BJA
z€R
holds, and this proves the original proposition. O



Figure 2: This figure is from a [Wikipedia entry.
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Second Solution. For a fixed z € R, let f(z) = @ ~=)i = 2%ig=2"i pe 4
complex-valued function for z € R. Consider the contour I'g in the [Figure 2]
for some R < 0. Since f(x) has no singularity, fFR f(z)dxz = 0 by the residue
theorem. Thus,

0= FRf(x)dx:(/71+/V2—/73>f(x)dx
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holds, and

R .. B i _ _
eiZ%/ e dt = e <e4l/ e dt —/ eXp(iRQeM)iRe”dt> . (D)
0 0 0

Note that ‘ f; G (t)dt‘ < f; |G(¢)| dt for any continuous complex-valued func-
tion G(t), and sin(2t) > t for all ¢ € [0, ]. Hence, if we let G(t) = exp(iR?e*")iRe™,

then
/4 G(t)dt §/4 G(t)] dt
0 0

/0
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http://en.wikipedia.org/wiki/File:Fresnel_Integral_Contour.svg

R2x 2.
If R > 1, then 1=~ < L If R <1, then % < 1,50 ¢="%" > 1 - = holds
by the Taylor expansion. Thus, it’s easy to check that

/4 G(t)dt| <
0
for all R > 0.

Next, by comparing the imaginary parts of , we obtain

R R
/ sin(t? — 2%)dt = / e =gy
0 0
R 24 - R 2 2, B
/ eli—2 >l/ e Udt]| =S e / G(t)dt
0 0 0
™ R 2 9. %
= sin(— — z2)/ e dt -3 |e? ’/ G(t)dt | .
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It is very well-known as the Gaussian integral that fOR etdt < I et dt =

&l

@ for all R > 0. Consequently, by applying the triangle inequality and ,

R ™ R 2 2, T
/ sin(t? — 2%)dt| < sin(f—ZQ)/ e Udt| + S e 1/ G(t)dt
0 4 0 0
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and the following inequality is immediately derived,

/AB sin(t? — 2%)dt /OB sin(t? — 2%)dt — /OA sin(t? — 2%)dt
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for any A, B > 0. Since the number /7 4 2 is unrelated with the value of z, we
have

<

B
sup / sin(z? — 2%)dx < /7 + 2
0<A<BJA

zeR



Therefore, if we choose a constant C' = 24/7 + 4,

B B
sup / sin(z? 4+ yx)dr = sup / sin(z? — 2?%)dx
A<BJa A<BJa
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which is the desired result.



