LEMMA. A matrix is nilpotent if and only if its characteristic polynomial is x^n . proof) (\Rightarrow) Let A be a nilpotent matrix. Assume $A^k = 0$. Let λ be an eigenvalue of A. Then $Ax = \lambda x$ for some non-zero eigenvector x. Then, $A^kx = A^{k-1} \times Ax = A^{k-1} \times \lambda x = \lambda A^{k-1}x = \dots = \lambda^{k-1}Ax = \lambda^k x$ Since $A^k = 0$ and x is non-zero vector, $\lambda^k = 0$. Thus, $\lambda = 0$. Since we chose an arbitrary eigenvalue, all eigenvalues are equal to zero. Thus, its characteristic polynomial is $(x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n) = (x - 0)^n = x^n$ (\Leftarrow) Suppose that all eigenvalues of matrix A are zero. Then the characteristic polynomial of A: det $(\lambda I - A) = \lambda^n = 0$. It now follows from the Cayley-Hamilton

theorem that $A^n = 0$. Thus, A is a nilpotent matrix.

Let
$$X = \{A \in M_{n \times n} : A^m = 0 \text{ for some positive integer } m\}$$
.
Assume that matrix A is in the closure of X , that is, for every ϵ , there exist some element of X , let M , such that $d(A,M) < \epsilon$.

Now, consider the characteristic polynomial of A, p(A). Let $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$.

Assume that $c_k = c \neq 0$ for some integer $k \in \{0, 1, ..., n-1\}$. We know that every coefficient of characteristic polynomial can be represented as a continuous function of a_{ij} (i, j = 1, 2, ..., n). Let $c_k = f(a_{11}, a_{12}, ..., a_{nn})$ (f represents a value of k-th coefficient of characteristic polynomial). Since f is continuous,

there exist ϵ such that if $|x_{ij} - a_{ij}| < \epsilon$ for all i, j, then $|f(x_{11}, x_{12}, \dots, x_{nn}) - f(a_{11}, a_{12}, \dots, a_{nn})| = |f(x_{11}, x_{12}, \dots, x_{nn}) - c| < |c| \Rightarrow f(x_{11}, x_{12}, \dots, x_{nn}) \neq 0$ $\dots (1)$

Now, by assumption, there exist matrix $M = (m_{ij}) \in X$ such that

 $\sum_{i,j} |a_{ij} - m_{ij}| = d(A, M) < \epsilon.$ Then, by (1), $f(m_{11}, m_{12}, \dots, m_{nn}) \neq 0.$ It means that k-th coefficient of characteristic polynomial of M is not 0. But, it is contradiction since characteristic polynomial of M, nilpotent matrix, is x^n by LEMMA. Thus, assumption is wrong, so $c_k = 0$ for all $k \in \{0, 1, \dots, n-1\}$. Therefore, characteristic polynomial of A is just x^n .

Then, by LEMMA, we can obtain that A is nilpotent matrix. Thus $A \in X$. Since every element in the closure of X is an element of X, we can conclude that X is a closed set.