Problem of the week / 2010-5 $212 \mid k=1(0624+1)$
let y be a rational number s.t. $\cos \pi y, \sin \pi y$, 1 are linearly dependent over \mathbb{Q}, that is, $\exists p, q, r \in \mathbb{Q} \quad$ s.t. $p \cos \pi y+q \sin \pi y+r=0$.

$$
\begin{array}{ll}
\Rightarrow & p \cos \pi y+q \sqrt{1-\cos ^{2} \pi y}+r=0 \\
\Rightarrow & (p \cos \pi y+r)^{2}=q^{2}\left(1-\cos ^{2} \pi y\right) \\
\Rightarrow & \left\{\begin{array}{l}
\left(p^{2}+q^{2}\right) \cos ^{2} \pi y+2 p r \cos \pi y+\left(r^{2}-q^{2}\right)=0 \\
\left(p^{2}+q^{2}\right) \sin ^{2} \pi y+2 q r \sin \pi y+\left(r^{2}-p^{2}\right)=0
\end{array}\right.
\end{array}
$$

Define $\quad \eta=e^{\pi i y}=\cos \pi y+i \sin \pi y$.
If $\frac{y}{2}=\frac{n}{m}$ where $\operatorname{gcd}(m, n)=1$, then η is an m th primitive root of unity, ie., $\eta^{m}=1$, and $\eta^{k} \neq 1 \quad{ }_{k \in\{1,2,-, m-1\}}$.

Note that $\cos \pi y=\frac{1}{2}\left(\eta+\frac{1}{\eta}\right)$.

$$
\begin{aligned}
& \Rightarrow \quad\left(p^{2}+q^{2}\right) \frac{1}{4}\left(\eta^{2}+\frac{1}{\eta^{2}}+2\right)+2 p r \cdot \frac{1}{2}\left(\eta+\frac{1}{\eta}\right)+\left(r^{2}-q^{2}\right)=0 \\
& \Rightarrow \quad\left(\frac{p^{2}+q^{2}}{4}\right) \eta^{2}+(p r) \eta+\left(\frac{p^{2}}{2}-\frac{q^{2}}{2}+r^{2}\right)+(p r) \frac{1}{\eta}+\frac{p^{2}+q^{2}}{4} \frac{1}{\eta^{2}}=0
\end{aligned}
$$

let $f(x)=\frac{p^{2}+q^{2}}{4} x^{4}+p r x^{3}+\left(\frac{p^{2}}{2}-\frac{q^{2}}{2}+r^{2}\right) x^{2}+p r x+\frac{p^{2}+q^{2}}{4}$.
Then $f \in \mathbb{Q}[x]$ and $\operatorname{deg} f=4, \quad f(\eta)=0$.

Since $f(\eta)=0$ and $\eta^{n}=1$, we have $f(x) \mid x^{m}-1$
And, $f(x) \nmid x^{k}-1 \quad \forall k \in\{1,2, \cdots, m-1\} .\left(\because \eta^{k} \neq 1 \quad \forall k \in\{1,2, \cdots, m-1\}\right)$.
Let $\Phi_{d}(x)$ be the doh Cyclotomic polynomial.

$$
\text { (i.e., } \left.\quad \Phi_{2}(x)=\prod_{\substack{i \leq k k_{s} \\(k, d, d)=1}}\left(x-e^{\frac{2 x x_{i}}{d}}\right)\right)
$$

Then $\Phi_{d} \in \mathbb{Q}[x] \quad{ }_{d},{ }^{(2)} \Phi_{d}$ is irreducible over \mathbb{Q},
(3)

$$
x^{n}-1=\prod_{d \ln } \Phi_{d}(0) \quad \forall n .
$$

Claim $\Phi_{n}(x) \mid f(x)$.
$\left(\begin{array}{ll}\because & \text { If not, then every irreducible factor of } f(x) \\ & \text { is the form of } \Phi_{d}(x) \text {, } d \text { is a proper divisor of } n . \\ & \text { But. } \Phi_{d}(x) \mid x^{d}-1 \text { where } d<n .\end{array}\right)$
So, $\quad \operatorname{deg} \Phi_{m}(x) \leq \operatorname{deg} f(x)=4$.
$\Rightarrow \quad \varphi(m) \leq 4$.
(1) $\varphi(m)=1 \Rightarrow m=1,2$ and $y=1,2\binom{\because \frac{y}{2}=\frac{n}{m}$ and $e^{\pi i y}$ is an }{m th primitive rout of 1}
(2) $\varphi(m)=2 \Rightarrow m=3,4,6$ and $y=\frac{2}{3}, \frac{4}{3}, \frac{1}{2}, \frac{3}{2}, \frac{1}{3}, \frac{5}{3}$
(3) $\varphi(m)=3 \Rightarrow$ no such m
(4) $\varphi(m)=4 \Rightarrow m=5,8,10,12$ and

$$
y=\frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \frac{8}{5}, \frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{1}{5}, \frac{3}{5}, \frac{7}{5}, \frac{9}{5}, \frac{1}{6}, \frac{5}{6}, \frac{7}{6}, \frac{11}{6} .
$$

But, $\quad \sin \frac{\pi}{5}=\sqrt{\frac{5-\sqrt{5}}{8}}$ and $\nexists_{p, q, r} \in \mathbb{Q}$ s.t.

$$
\left(p^{2}+q^{2}\right) \sin ^{2} \frac{\pi}{5}+2 q r \sin \frac{\pi}{5}+r^{2}-p^{2}=0 .
$$

Similar for $y=\frac{2}{5}, \frac{3}{5}, \cdots, \frac{9}{5}$.
You may verify that $\cos \pi y, \sin \pi y$, 1 are linearly indep. for other cases.
Hence, $y \in\left\{1,2, \frac{1}{2}, \frac{3}{2}, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{5}{3}, \frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{1}{6}, \frac{5}{6}, \frac{\pi}{6}, \frac{11}{6}\right\}$.
Simply, $y \in\left\{\left.\frac{k}{12} \right\rvert\, 1 \leq k \leq 24, k\right.$ and 12 are not coprime $\}$.

Remark:
Observe that if y is a solution, then $y+2$ is a solution as well. So the set of solutions should be: $\{k / 12: \operatorname{gcd}(k, 12)$ is not $1, k$: integer $\}$

