POW2010-2 Nonsingular Matrix
20090067 권성민
Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ be an $\mathrm{n} \times \mathrm{n}$ matrix of complex numbers such that $\sum_{j=1}^{n}\left|a_{i j}\right|<1 \quad$ for each i. Prove that I -A is nonsingular.

Proof)
Suppose that I-A is singular.
Then $\operatorname{det}(I-A)=0$, and $\lambda=1$ is an eigenvalue of $A$.
Let x be a nonzero vector in $\mathrm{C}^{\mathrm{n}}$ which is an eigenvector of A corresponding to $\lambda=1$.
Then x satisfies that $\mathrm{Ax}=\mathrm{x}$.
Then,

$$
\begin{equation*}
\sum_{j} a_{j} x_{j}=x_{i} \tag{*}
\end{equation*}
$$

for each i.
Let $x_{k}$ be the $\mathrm{k}^{\text {th }}$ component of x such that $\left|\mathrm{x}_{\mathrm{k}}\right| \geq\left|\mathrm{x}_{\mathrm{i}}\right|$ for $\mathrm{i} \in\{1,2, \cdots, \mathrm{n}\}$. (k $\left.\in\{1,2, \cdots, \mathrm{n}\}\right)$
Since
$\left|\sum_{j} a_{k j} x_{j}\right| \leq \sum_{j}\left|a_{k j} x_{j}\right|=\sum_{j}\left|a_{k j}\right|\left|x_{j}\right| \leq\left|x_{k}\right| \sum_{j}\left|a_{k j}\right|<\left|x_{k}\right| \quad$ (by (1) and triangular inequality) and by the equality ( ${ }^{*}$ ),

$$
\left|\sum_{\mathrm{j}} \mathrm{a}_{\mathrm{kj}} \mathrm{x}_{\mathrm{j}}\right|=\left|\mathrm{x}_{\mathrm{k}}\right|
$$

there is a contradiction.
Therefore, I-A is nonsingular.
QED
(1) Let $\mathrm{e}=\mathrm{a}+\mathrm{bi}, \mathrm{f}=\mathrm{c}+$ di be complex numbers. $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real numbers)
$|\mathrm{ef}|=|(\mathrm{ac}-\mathrm{bd})+(\mathrm{ad}+\mathrm{bc}) \mathrm{i}|=\left((\mathrm{ac}-\mathrm{bd})^{2}+(\mathrm{ad}+\mathrm{bc})^{2}\right)^{1 / 2}=\left(\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)\right)^{1 / 2}=|\mathrm{e}||\mathrm{f}|$

