(\leftarrow) It is obvious that any line segment between two points in C is included in C. One can construct a C-convex set S by $S=C$.
(\rightarrow)
Notation: Define a curve similar to C and started from P to Q as $C_{P Q}$.
Let S the C-convex set, and let A, B two distinct points in S. For simplicity, assign a polar coordinate (r, θ) as $A=(0,0), B=(1,0)$.
If C is not straight, there exist a point $X_{1}=(p, \theta)(0<p, 0<\theta)$ which is in curve $C_{A B}$ but not in segment $\overline{A B}$. By convexity, X_{1} is in S.
(Note that p and θ are constants only dependent to shape of C.)
Define other point X_{2} in curve $C_{A X_{1}}$ s.t. $A B X_{1}$ is similar to $A X_{1} X_{2}$. X_{2} has the coordinate $\left(p^{2}, 2 \theta\right)$. Similarily, we define the consequence points $X_{n}=\left(p^{n}, n \theta\right)$ and they all are in S by convexity.

Choose n s.t. $\frac{4 k+1}{2} \pi \leq n \theta \leq \frac{4 k+3}{2} \pi$, then $\left|\overline{X_{n} B}\right|=1+p^{2 n}-2 p^{n} \cos n \theta>|\overline{A B}|$.
Since p and θ are constants, for any two points (A, B) in S, we can find other two points $\left(X_{n}, B\right)$ in S with constantly magnified length. Therefore, S cannot be bounded.
(Note: It is not sufficient to disprove the existence of "diameter"; open set does not have concrete diameter but may be bounded.)

