POW2009-7

SUNGYOON KIM

Let α, β be $(x + \sqrt{x^2 - 1})^{1/n}$ and $(x - \sqrt{x^2 - 1})^{1/n}$, respectively. Assume that $q = \alpha + \beta$ is a rational number. Since $\alpha\beta = 1$, α and β are two roots of $t^2 - qt + 1 = 0$. It is easy to see that a sequence $A_m = \alpha^m + \beta^m$ satisfies $A_{m+2} - qA_{m+1} + A_m = 0$. Thus, we can write A_m as a linear combination of $A_0 = 2$ and $A_1 = q$ with rational coefficients. This implies that A_m is rational. Therefore, $A_n = \alpha^n + \beta^n = 2x$ is rational, or equivalently, x is rational, as desired.