1 problem

Let $a_{0}=a$ and $a_{n+1}=a_{n}\left(a_{n}^{2}-3\right)$. Find all real values a such that the sequence $\left\{a_{n}\right\}$ converges.

2 solution

If $\left|a_{n}\right|>2,\left|a_{n+1}\right|=\left|a_{n}\right|\left|a_{n}^{2}-3\right|>\left|a_{n}\right|$. Otherwise $\left|a_{n}\right| \leq 2$ then $\left|a_{n+1}\right|=$ $\left|a_{n}\right|\left|a_{n}^{2}-3\right| \leq 2 \cdot 1=2$.
Therefore, $\left\{a_{n}\right\}$ never converges for any $|a|>2$. Ignore them and assume $|a| \leq 2$ from now. (then $\left|a_{n}\right| \leq 2$ is also true.)
Substituting $a_{n}=2 \cos \theta_{n}\left(\theta_{n} \in R\right)$, We get

$$
a_{n+1}=a_{n}\left(a_{n}^{2}-3\right)=2 \cos \theta_{n}\left(4 \cos ^{2} \theta_{n}-3\right)=2 \cos 3 \theta_{n}
$$

(using $\left.\cos ^{3} \theta=(3 \cos \theta+\cos 3 \theta) / 4\right)$. Therefore, Letting $\theta=\arccos a / 2$, we can deduce

$$
a_{n}=2 \cos 3^{n} \theta
$$

Now, let us consider the exact limit values of $\left\{a_{n}\right\}$. We let $A=\lim a_{n}$, and from $\lim a_{n}=\lim a_{n+1}$ we can get $A=A\left(A^{2}-3\right)$, so $A=0,2$, or -2 . The corresponding angle values are $k \pi / 2$ where $k \in Z$ (solutions of $\cos \theta=0,2,-2$.)
Define a sequence $\left\{a_{n}\right\}$ is trivial if there is a number t s.t.

$$
a_{t}=a_{t+1}=a_{t+2}=\cdots
$$

We can prove $\left\{a_{n}\right\}$ is trivial iff there is a number t s.t. $a_{t}=0,2,-2$, from the equation $a_{t+1}=a_{t}$.
Firstly we find all values a s.t. $\left\{a_{n}\right\}$ converges trivially. From $a_{t}=0,2,-2$ and $a_{t}=2 \cos 3^{t} \theta$ we get

$$
3^{t} \theta=k \pi / 2
$$

for an $k \in Z$. Thus

$$
\theta=\frac{k \pi}{2 \cdot 3^{t}}
$$

and from $a=2 \cos \theta$,

$$
a=2 \cos \frac{k \pi}{2 \cdot 3^{t}}
$$

that is all values for trivial convergence.
From now, we will prove that there is no nontrivially convergent sequence, that is, there is no θ such that $\left\{3^{n} \theta \bmod 2 \pi\right\}$ is nontrivially convergent to one of $k \pi / 2$.
To make problem simply, first we try to find all θ to make $\left\{3^{n} \theta \bmod \pi / 2\right\}$ nontrivially convergent, or simply, to make

$$
b_{n}=3^{n} \theta /(\pi / 2) \quad \bmod 1
$$

nontrivially convergent.
Let $X=2 \theta / \pi$, and put

$$
X=x+\sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}}, x \in Z, x_{i} \in\{0,1,2\} .
$$

(or simply, $X=x+0 . x_{1} x_{2} x_{3} \cdots_{(3)}$ in base 3.) Then the sequence is rewritten as

$$
\begin{aligned}
b_{n} & =3^{n} \theta /(\pi / 2) \quad \bmod 1 \\
& =3^{n} X \quad \bmod 1 \\
& =3^{n} x+\sum_{i=1}^{\infty} x_{i} \frac{3^{n}}{3^{i}} \bmod 1 \\
& =\sum_{j=1}^{\infty} \frac{x_{n+j}}{3^{j}} .
\end{aligned}
$$

To make b_{n} convergent, there should be a number k s.t.

$$
\forall i \geq 0: x_{k+i}=m, m \in\{0,1,2\} .
$$

Note that $x_{k+i}=0$ makes the sequence trivial; $x_{k+i}=2$ case is equivalent to $x_{k-1}=1, x_{k+i}=0$ because $0.222 \cdots_{(3)}=1$. Thus $m=1$.
Then, $\sum_{i} 1 / 3^{i}=1 / 2$ makes the equation into

$$
b_{k-1}=\frac{1}{2}=3^{k} \theta /(\pi / 2)
$$

$$
\theta=\frac{\pi}{4 \cdot 3^{k}}
$$

However, this values does not make $\left\{a_{n}\right\}$ convergent at all:

$$
\begin{aligned}
a_{k} & =2 \cos 3^{k} \theta \\
& =2 \cos 3^{k} \frac{\pi}{4 \cdot 3^{k}} \\
& =2 \cos \frac{\pi}{4} \\
& =1
\end{aligned}
$$

and

$$
a_{k+1}=-1, a_{k+2}=1, a_{k+3}=-1, \cdots,
$$

which is not a convergent sequence.
As shown above, we proved that there is no nontrivially convergent sequence.
Therefore, there are only trivially convergent sequences and corresponding a values are:

$$
a=2 \cos \frac{k \pi}{2 \cdot 3^{t}}, k \in Z, t \in N
$$

