2009-6 Sum of integers of the fourth power
SangHoon, Kwon

Let x be an arbitrary positive integer. Then there exists $q \in \mathbb{Z}$ such that $x=6 q+\mathcal{R}$ where $\mathcal{R} \in\{0,1,2,3,4,5\}$. By Lagrange's Theorem, q can be expressed as the sum of four squares of integers. That is, $q=\mathcal{N}_{1}^{2}+\mathcal{N}_{2}{ }^{2}+\mathcal{N}_{3}{ }^{2}+\mathcal{N}_{4}{ }^{2}$ and each \mathcal{N}_{i} is an integer. To prove that x can be written as a sum of at most 53 biquadrates (which means fourth power of an integer), it is enough to show that every integer of the form $6 \mathcal{N}^{2}$ can be written as a sum of 12 biquadrates. Again, by Lagrange's Theorem, \mathcal{N} can be written as $\mathcal{N}=n_{1}{ }^{2}+n_{2}{ }^{2}+n_{3}{ }^{2}+n_{4}{ }^{2}$. Note that

$$
\begin{array}{r}
6 \mathcal{N}^{2}=6\left(\sum_{1 \leq i \leq 4} n_{i}^{2}\right)^{2}=6 \sum_{1 \leq i \leq 4} n_{i}^{4}+12 \sum_{1 \leq i<j \leq 4} n_{i}^{2} n_{j}^{2} \\
=\sum_{1 \leq i<j \leq 4}\left(n_{i}+n_{j}\right)^{4}+\sum_{1 \leq i<j \leq 4}\left(n_{i}-n_{j}\right)^{4}
\end{array}
$$

Since the number of 2-combination from the set of 4 elements is 6 , the last representation implies that $6 \mathcal{N}^{2}$ is written as the sum of 12 biquadrates. Because \mathcal{R} can be written as a sum of at most five 1^{4}, each positive integer can be written as a sum of at most 53 biquadrates.

