2009-6 Sum of integers of the fourth power SangHoon, Kwon

Let x be an arbitrary positive integer. Then there exists $q \in \mathbb{Z}$ such that $x = 6q + \mathcal{R}$ where $\mathcal{R} \in \{0,1,2,3,4,5\}$. By Lagrange's Theorem, q can be expressed as the sum of four squares of integers. That is, $q = \mathcal{N}_1^2 + \mathcal{N}_2^2 + \mathcal{N}_3^2 + \mathcal{N}_4^2$ and each \mathcal{N}_i is an integer. To prove that x can be written as a sum of at most 53 biquadrates (which means fourth power of an integer), it is enough to show that every integer of the form $6\mathcal{N}^2$ can be written as a sum of 12 biquadrates. Again, by Lagrange's Theorem, \mathcal{N} can be written as $\mathcal{N} = n_1^2 + n_2^2 + n_3^2 + n_4^2$. Note that

$$6\mathcal{N}^{2} = 6\left(\sum_{1 \le i \le 4} n_{i}^{2}\right)^{2} = 6\sum_{1 \le i \le 4} n_{i}^{4} + 12\sum_{1 \le i < j \le 4} n_{i}^{2} n_{j}^{2}$$
$$= \sum_{1 \le i < j \le 4} (n_{i} + n_{j})^{4} + \sum_{1 \le i < j \le 4} (n_{i} - n_{j})^{4}$$

Since the number of 2-combination from the set of 4 elements is 6, the last representation implies that $6N^2$ is written as the sum of 12 biquadrates. Because \mathcal{R} can be written as a sum of at most five 1^4 , each positive integer can be written as a sum of at most 53 biquadrates.