Problem of the week 2009-2: Sequence of Log

SangHoon, Kwon

Let us show first that $a_{n} \geq p_{n}$ for all $n \in \mathbb{N}$ where p_{n} is the nth prime number. ($p_{1}=2, p_{2}=3, p_{3}=5, \cdots$) Assume that there are at most $n-1$ distinct prime factors q_{i} divide $a_{1} a_{2} \cdots a_{n}$. Then we can write each a_{i} as $a_{i}=q_{1}{ }^{\mathrm{r}_{i 1} 1} \mathcal{G}_{2}{ }^{\mathrm{r}_{i 2}} \cdots q_{n-1}{ }^{\mathrm{r}_{i(n-1)}}$ for all $1 \leq i \leq n$. In other words, $\log a_{i}=\mathrm{r}_{i 1} \log q_{1}+\mathrm{r}_{i 2} \log q_{2}+\cdots+\mathrm{r}_{i(n-1)} \log q_{n-1}$. Notice that $\log q_{i}$ s are linearly independent in the field \mathbb{Q} because if $c_{i} \in \mathbb{Q}, \sum_{i=1}^{n} c_{i} \log q_{i}=0$ means $\prod_{i=1}^{n} q_{i}{ }^{c_{i}}=1$ which again implies that $c_{i}=0$ for all c_{i}. Now consider the equation $\sum_{i=1}^{n} \mathrm{~b}_{i} \log a_{i}=0$ about the b_{i}. This is consistent to the homogeneous equation

$$
\left(\begin{array}{ccc}
\mathrm{r}_{11} & \cdots & \mathrm{r}_{n 1} \\
\vdots & \ddots & \vdots \\
\mathrm{r}_{1(n-1)} & \cdots & \mathrm{r}_{n(n-1)}
\end{array}\right)\left(\begin{array}{c}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\vdots \\
\mathrm{~b}_{n}
\end{array}\right)=0
$$

The rank of left matrix is, however, lower than the number of the unknowns, so there is a nontrivial solution ($\mathrm{b}_{1}, \mathrm{~b}_{2}, \cdots, \mathrm{~b}_{n}$). This contradicts that $\log a_{i} \mathrm{~s}$ are linearly independent over the rational field \mathbb{Q}. Therefore, there is at least n distinct prime factors divide $a_{1} a_{2} \cdots a_{n}$ and since $\left\{a_{n}\right\}$ is a strictly increasing sequence, we can assure that $a_{n} \geq p_{n}$. Now by Rosser's Theorem, $p_{n}>n \log n$ for $n>1$ (Rosser 1938). Thus,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n} \geq \lim _{n \rightarrow \infty} \frac{p_{n}}{n}>\lim _{n \rightarrow \infty} \log n=\infty
$$

which completes the proof.

