Problem of the week 2009-2: Sequence of Log

SangHoon, Kwon

Let us show first that $a_n \ge p_n$ for all $n \in \mathbb{N}$ where p_n is the *n*th prime number. $(p_1 = 2, p_2 = 3, p_3 = 5, \cdots)$ Assume that there are at most n-1 distinct prime factors q_i divide $a_1a_2 \cdots a_n$. Then we can write each a_i as $a_i = q_1^{r_{i1}}q_2^{r_{i2}}\cdots q_{n-1}^{r_{i(n-1)}}$ for all $1 \le i \le n$. In other words, $\log a_i = r_{i1}\log q_1 + r_{i2}\log q_2 + \cdots + r_{i(n-1)}\log q_{n-1}$. Notice that $\log q_i$ s are linearly independent in the field \mathbb{Q} because if $c_i \in \mathbb{Q}$, $\sum_{i=1}^n c_i \log q_i = 0$ means $\prod_{i=1}^n q_i^{c_i} = 1$ which again implies that $c_i = 0$ for all c_i . Now consider the equation $\sum_{i=1}^n b_i \log a_i = 0$ about the b_i . This is consistent to the homogeneous equation

$$\begin{pmatrix} \mathbf{r}_{11} & \cdots & \mathbf{r}_{n1} \\ \vdots & \ddots & \vdots \\ \mathbf{r}_{1(n-1)} & \cdots & \mathbf{r}_{n(n-1)} \end{pmatrix} \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{pmatrix} = \mathbf{0}$$

The rank of left matrix is, however, lower than the number of the unknowns, so there is a nontrivial solution (b_1, b_2, \dots, b_n) . This contradicts that $\log a_i$ s are linearly independent over the rational field \mathbb{Q} . Therefore, there is at least n distinct prime factors divide $a_1a_2\cdots a_n$ and since $\{a_n\}$ is a strictly increasing sequence, we can assure that $a_n \ge p_n$. Now by Rosser's Theorem, $p_n > n \log n$ for n > 1 (Rosser 1938). Thus,

$$\lim_{n \to \infty} \frac{a_n}{n} \ge \lim_{n \to \infty} \frac{p_n}{n} > \lim_{n \to \infty} \log n = \infty$$

which completes the proof.