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∫ 1

0
min(x, y)f(y)dy = λf(x)

The following is a obvious fact.

Claim 1 If f = 0 on [0, 1], then f = 0 everywhere.

Suppose λ 6= 0.

Claim 2 f is differentiable on (0, 1) and

f ′(x) =
1
λ

∫ 1

x
f(y)dy.

proof. Remind that if f is continuous on the closed interval then f is bounded
on that interval.

lim
h→0+

f(x + h)− f(x)
h

= lim
h→0+

1
hλ

∫ 1

0
(min(x + h, y)−min(x, y))f(y)dy

= lim
h→0+

1
hλ

(∫ x+h

x
(y − x)f(y)dy +

∫ 1

x+h
hf(y)dy

)

= lim
h→0+

1
hλ

∫ 1

x+h
hf(y)dy

=
1
λ

∫ 1

x
f(y)dy.

(Second equality follows from the fact that 0 ≤ |(y−x)f(y)| ≤ max(|M |, |m|)h
on [x, x + h] where M , m are the maximum and the minimum of f on [x,
x + h].)

Similarly,
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lim
h→0−

f(x + h)− f(x)
h

= lim
h→0−

1
hλ

∫ 1

0
(min(x + h, y)−min(x, y))f(y)dy

= lim
h→0−

1
hλ

(∫ x

x+h
(x + h− y)f(y)dy +

∫ 1

x
hf(y)dy

)

= lim
h→0−

1
hλ

∫ 1

x+h
hf(y)dy

=
1
λ

∫ 1

x
f(y)dy. ♠

Claim 3 f ′ is differentiable on (0, 1) and

f ′′(x) = − 1
λ

f(x)

Proof. From the fundamental Theorem of Calculus, it’s almost obvious. ♠

Now we have to solve the second order ordinary differential equation

λf ′′(x) + f(x) = 0.

If λ = 1
µ2 > 0 and µ > 0, the general Solution of this equation is

f(x) = c1 cos(µx) + c2 sin(µx)

Since f is continuous, it must satisfy f(0) = 0 and f(1) = µ2
∫ 1
0 yf(y)dy.

f(0) = 0 =⇒ c1 = 0

f(1) = µ2

∫ 1

0
yf(y)dy =⇒ c2 sin(µ) = c2µ

2

∫ 1

0
y sin(µy)dy

=⇒ µ cos(µ)c2 = 0

If c2 = 0, f = 0. Since µ 6= 0, cosµ = 0. Hence eigenvalue λ’s are 1

(nπ+π
2 )2

(n ∈ N ∪ {0}). And corresponding eigenvector

f(x) = C sin
((

nπ +
π

2

)
x
)

for any constant C.

If λ = − 1
µ2 < 0 and µ > 0, the general Solution of this equation is

f(x) = d1e
µx + d2e

−µx
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Since f is continuous, it must satisfy f(0) = 0 and f(1) = µ2
∫ 1
0 yf(y)dy.

f(0) = 0 =⇒ d1 + d2 = 0

f(1) = −µ2

∫ 1

0
yf(y)dy =⇒ d1

(
eµ − e−µ

)
= −d1µ

2

∫ 1

0
y

(
eµy − e−µy

)
dy

=⇒ µ
(
eµ + e−µ

)
d1 = 0 (1)

Since eµ + e−µ > 0 and µ > 0, d1 = 0. Hence f = 0.

Finally, consider the case when λ = 0

Since f is continuous on [0, 1], there exist second order antiderivative
function F on (0, 1). (F ′′ = f) I

λF ′′(x) =
∫ x

0
yF ′′(y)dy + x

∫ 1

x
F ′′(y)dy

λF
′′
(x) =

[
yF ′(y)

]x

0
−

∫ x

0
F ′(y)dy + x

∫ 1

x
F
′′
(y)dy

λF
′′
(x) = xF ′(x)− (F (x)− F (0)) + x(F ′(1)− F ′(x))

λF
′′
(x) = F (0)− F (x) + F ′(1)x

λF
′′
(x) + F (x)− F ′(1)x− F (0) = 0II

If λ = 0, F (x) = F ′(1)x− F (0). Hence f(x) = F ′′(x) = 0.

Now we have to determine the value of f on (−∞, 0) ∪ (1, ∞)
If x ∈ (−∞, 0), then

λf(x) = x

∫ 1

0
f(y)dy

IIt is also a corollary of the fundamental theorem of calculus.
IIIf we solve this differential equation, then we get the same solutions when λ 6= 0. That

means it can be another way to solve this problem.
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f(x) =
(
nπ +

π

2

)2
(∫ 1

0
C sin

((
nπ +

π

2

)
y
)

dy

)
x

= C
(
nπ +

π

2

)
x (2)

If x ∈ (0, ∞), then

λf(x) =
∫ 1

0
yf(y)dy = f(1) = C sin

(
nπ +

π

2

)
= C(−1)n

Answer. Eigenvalues λ’s are 1

(nπ+π
2 )2 (n ∈ N∪{0}). And corresponding

eigenvector

f(x) =





C
(
nπ + π

2

)
x if x ∈ (−∞, 0).

C sin
((

nπ + π
2

)
x
)

if x ∈ [0, 1].
C(−1)n if x ∈ (1, ∞).

for all constant C.
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