양해훈 POW\#2008-9

Lemma. Function $g: Z \Rightarrow N, g(x)=\left\{\begin{array}{ll}2 x & x>0 \\ -2 x+1 & x \leqq 0\end{array}\right.$ is injective function.
Proof of Lemma
Let $g(x)=g(y)=a$ for some integers x, y, a. a can be even or odd number.
i) a is even: x and y must be positive. $g(x)=g(y)$ yields $2 x=2 y$, thus $x=y$.
ii) a is odd: x and y must not be positive. From $g(x)=g(y),-2 x+1=-2 y+1$, and $x=y$.
Therefore, g is injective.

Let $h: R^{2} \Rightarrow N, h(x, y)$ be defined as the least positive number N that satisfies $\lfloor N x\rfloor \neq\lfloor N y\rfloor$ or 1 if $x=y$, and define f as

$$
f(x, y, z)= \begin{cases}1 & x=y=z \\ 5 & x=y \neq z \\ 7 & x \neq y=z \\ 2^{h(x, y)} \times 3^{g(\lfloor x h(x, y)\rfloor)} & \text { Otherwise }\end{cases}
$$

then f is a function from R^{3} to N. I will prove that $f(x, y, z)=f(y, z, w)$ then $x=y=z=w$. There are only four kinds of values $f(x, y, z)$ can have.
i) $f(x, y, z)=f(y, z, w)=1$: Obviously $x=y=z=w$.
ii) $f(x, y, z)=f(y, z, w)=5$: From $f(x, y, z)=5, y \neq z$ and from $f(y, z, w)=5, y=z$. Contradiction.
iii) $f(x, y, z)=f(y, z, w)=7$: From $f(x, y, z)=7, y=z$ and from $f(y, z, w)=7, y \neq z$. Contradiction.
iv) $f(x, y, z)=f(y, z, w)=2^{\alpha} \times 3^{\beta}$ for some positive numbers α, β :

Note that $x \neq y$ and $y \neq z$, so always $\lfloor x h(x, y)\rfloor \neq\lfloor y h(x, y)\rfloor$ this case.
Because $\quad 2^{h(x, y)} \times 3^{g(\lfloor x h(x, y)\rfloor)}=2^{h(y, z)} \times 3^{g(\lfloor y h(y, z)\rfloor)}, \quad h(x, y)=h(y, z) \quad$ and $g(\lfloor x h(x, y)\rfloor)=g(\lfloor y h(y, z)\rfloor)$ and by Lemma, $\lfloor x h(x, y)\rfloor=\lfloor y h(y, z)\rfloor$. Therefore, $\lfloor x h(x, y)\rfloor=\lfloor y h(x, y)\rfloor$.
We already showed $\lfloor x h(x, y)\rfloor \neq\lfloor y h(x, y)\rfloor$, and it is contradiction.

By i) \sim iv), f is the function that satisfies the condition of the problem.

