POW #7: Solution

Yoon Haewon, KAIST 04

2008.10.26

Let $f(x) = 5^{x^2} - 4^{x^2}$ and $g(x) = 4^x - 3^x$. If x = 0, 1, then f(x) = g(x)obviously. I will show f(x) = g(x) has exactly two real solutions 0, 1.

Claim 1 $0 > x \Longrightarrow f(x) > g(x)$

Proof. If 0 > x, then $4^x - 3^x < 0$. But $5^{x^2} - 4^{x^2} > 0$.

Claim 2 $x > 1 \Longrightarrow f(x) > g(x)$

Proof. First I will show $5^{x^2} - 4^{x^2} > 5^x - 4^x$. $5^{x^2} - 4^{x^2} > 5^x - 4^x \iff 5^x (5^{x(x-1)} - 1) > 4^x (4^{x(x-1)} - 1)$

And it is clear $5^z > 4^z$ and $5^z - 1 > 4^z - 1 > 0$ for z > 0.

Now we need to prove $5^x - 4^x > 4^x - 3^x$.

For fixed x > 1, let $h(y) = (y+1)^x - y^x$. $\frac{d}{dy}h(y) = x(y+1)^{x-1} - xy^{x-1} = x((y+1)^{x-1} - y^{x-1}).$

So, $\frac{d}{dy}h(y) > 0$ when y > 0 and h(y) is strictly increasing when y > 0.

Claim 3 $1 > x > 0 \Longrightarrow g(x) > f(x)$

Proof. First I will show $5^x - 4^x > 5^{x^2} - 4^{x^2}$. $5^x - 4^x > 5^{x^2} - 4^{x^2} \iff 5^x (1 - 5^{x(x-1)}) > 4^x (1 - 4^{x(x-1)})$

And it is clear $5^z > 4^z$ for z > 0 and $1 - 5^z > 1 - 4^z > 0$ for z < 0.

Now we need to prove $4^x - 3^x > 5^x - 4^x$.

For fixed 1 > x > 0, let $h(y) = (y+1)^x - y^x$.

 $\frac{d}{dy}h(y) = x(y+1)^{x-1} - xy^{x-1} = x((y+1)^{x-1} - y^{x-1}) = x\left(\frac{1}{(y+1)^{1-x}} - \frac{1}{y^{1-x}}\right).$

So, $\frac{d}{dy}h(y) < 0$ when y > 0 and h(y) is strictly decreasing when y > 0.

Now we can see that f(x) = g(x) has exactly two solutions which are 0 and 1.