Let $a_{n}(i)=\sqrt{1+(i-1) \sqrt{1+i \sqrt{\cdots \sqrt{1+n \sqrt{1+n+1}}}}}$
Especially, $a_{n}(3)=a_{n}$ which defined in the problem.
Let $b_{n}(i)=i-a_{n}(i)$
Let $c_{n}(i)=\frac{b_{n}(i)}{i-1}$.

Prop 1. $\lim _{n \rightarrow \infty} a_{n}(i)=i$. i.e. $\lim _{n \rightarrow \infty} b_{n}(i)=0$.
proof is not hard, left for the readers.
Hint $-3=\sqrt{1+8}=\sqrt{1+2 \sqrt{16}}=\sqrt{1+2 \sqrt{1+3 \sqrt{25}}}=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{36}}}}=\cdots \cdots$

Prop 2. $a_{n}(n+2)=\sqrt{n+2} . c_{n}(i) \leq 1$ for $i=3,4, \ldots, n+1, n+2$
pf) by definition and calculation.

Prop 3. if $\lim _{n \rightarrow \infty} \frac{3-a_{n+1}}{3-a_{n}}=\frac{1}{2}$, then $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{a_{n}-a_{n-1}}=\frac{1}{2}$.
pf) Let $d_{n}=a_{n}-a_{n-1}$. Then $\sum_{k=n+1}^{\infty} d_{n}=3-a_{n}$. If $\lim _{n \rightarrow \infty} \frac{3-a_{n+1}}{3-a_{n}}=\frac{1}{2}$,
$\lim _{n \rightarrow \infty} \frac{\sum_{k=n+2}^{\infty} d_{n}}{d_{n+1}+\sum_{k=n+2}^{\infty} d_{n}}=\frac{1}{2}$. Both numerater and denominator converges, and both are not zero at any time. so we can reverse it.
$\lim _{n \rightarrow \infty} \frac{d_{n+1}+\sum_{k=n+2}^{\infty} d_{n}}{\sum_{k=n+2}^{\infty} d_{n}}=\lim _{n \rightarrow \infty} \frac{d_{n+1}}{\sum_{k=n+2}^{\infty} d_{n}}+1=2$. thus $\lim _{n \rightarrow \infty} \frac{d_{n+1}}{\sum_{k=n+2}^{\infty} d_{n}}=1$.
Similarly, from $\lim _{n \rightarrow \infty} \frac{3-a_{n+2}}{3-a_{n}}=\frac{1}{4}$, we can know $\lim _{n \rightarrow \infty} \frac{d_{n}}{\sum_{k=n+2}^{\infty} d_{n}}=2$.
Thus $\lim _{n \rightarrow \infty} \frac{d_{n+1}}{d_{n}}=\frac{1}{2}$, so we get $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{a_{n}-a_{n-1}}=\frac{1}{2}$. Q.E.D.

Proof of the problem

We could easily know that
$i+1-b_{n}(i+1)=a_{n}(i+1)=\frac{a_{n}(i)^{2}-1}{i-1}=\frac{\left(i-b_{n}(i)\right)^{2}-1}{i-1}=i+1+\frac{b_{n}(i)^{2}-2 i b_{n}(i)}{i-1}$
$b_{n}(i+1)-2 \frac{i}{i-1} b_{n}(i)+\frac{b_{n}(i)^{2}}{i-1}=0$
$c_{n}(i+1)-2 c_{n}(i)+\frac{i-1}{i} c_{n}(i)^{2}=0$
From this equation, we can derive these two inequality.
$c_{n}(i+1)=2 c_{n}(i)-\frac{i-1}{i} c_{n}(i)^{2}<2 c_{n}(i) \ldots$ (2)
$c_{n}(i+1)-2 c_{n}(i)+c_{n}(i)^{2}>0 \ldots$ (3)
(3) is 2 nd-order inequlaity, so we can prove it well known formula.
$0<c_{n}(i)<1-\sqrt{1-c_{n}(i+1)} \ldots(4)$ (Since $\left.c_{n}(i)<1\right)$

From (2) we get $c_{n}(3)>\frac{c_{n}(4)}{2}>\cdots>\frac{c_{n}(n+2)}{2^{n-1}}=\frac{b_{n}(n+2)}{(n+1) 2^{n-1}}=\frac{n+2-\sqrt{n+2}}{(n+1) 2^{n-1}}$

From (4) we get
$c_{n}(3)<1-\sqrt{1-c_{n}(4)}<1-\sqrt{1-\left(1-\sqrt{1-c_{n}(5)}\right.}=1-\left(1-c_{n}(5)\right)^{\frac{1}{4}}<\cdots<1-\left(1-c_{n}(n+2)\right)^{\frac{1}{2^{n-1}}}$
$=1-\left(1-\frac{1}{2^{n-1}} \times c_{n}(n+2)-O\left(\frac{1}{2^{2 n-2}} c_{n}(n+2)^{2}\right)\right)=\frac{n+2-\sqrt{n+2}}{(n+1) 2^{n-1}}+O\left(\frac{1}{2^{2 n-2}}\right)$
$0<c_{n}(n+2)<1$ guarantee that we can put all redundant terms to $O\left(\frac{1}{2^{2 n-2}}\right)$.
Since $b_{n}(3)=2 c_{n}(3)$,
$\frac{n+2-\sqrt{n+2}}{(n+1) 2^{n-2}}<b_{n}(3)<\frac{n+2-\sqrt{n+2}}{(n+1) 2^{n-2}}+O\left(\frac{1}{2^{2 n-2}}\right)$

Hence we get $\lim _{n \rightarrow \infty} \frac{b_{n+1}(3)}{b_{n}(3)}=\frac{1}{2}$.
and by Prop 3 with this result, $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{a_{n}-a_{n-1}}=\frac{1}{2}$.

