Solution for POW \#3

Yoon Haewon, KAIST 04

2008.9.21

Claim 1 A square integer matrix X has an inverse with integer entries if and only if $\operatorname{det}(X)= \pm 1$.

(Proof of Claim 1.)

$(\Rightarrow) \operatorname{det}(X) \cdot \operatorname{det}\left(X^{-1}\right)=\operatorname{det}(I)=1$.
Since $\operatorname{det}(X)$ is an integer, $\operatorname{det}(X)= \pm 1$.
(\Leftarrow) If $\operatorname{det}(X)= \pm 1$, then $\pm \operatorname{adj} X$, the classical adjoint of X is an inverse of X with integer entries.

To show $A+4 B$ is invertible, I will argue about a more delicate issue.
(a simple generalization of this problem)
Claim 2 The $n \times n$ matrices A and B are given.
Let $f(x)=\operatorname{det}(A+x B)$
Assume that we have $2 n+1$ distinct x 's which satisfy $f(x)= \pm 1$.
Then $A+x B$ is invertible for every $x \in \mathbb{F}$ where \mathbb{F} is any field.

(Proof of Claim 2.)

$f(x)$ is a polynomial of degree at most n such that $f(x)= \pm 1$ for given distinct x 's.

By Pigeonhole principle, there are $n+1$ or more distinct x 's which have same values of $f(x)$.

Then f must be a constant function.
$(\because$ WLOG, asuume there are $n+1$ distinct x 's such that $f(x)=1$.
Then the equation $f(x)-1=0$ has $n+1$ distinct roots.
But the degree of the polynomial f is at most n.
Hence f must be a constant.)

Therefore $f(x)=+1$ for all $x \in \mathbb{F}$ or $f(x)=-1$ for all $x \in \mathbb{F}$ which means $A+x B$ is invertible for every $x \in \mathbb{F}$. \bigcirc
$A+4 B=(A+B)+(A+3 B)-A$ is an integer matrix.
So, from the last sentense of (Proof of Claim 2), $A+4 B$ has an inverse with integer entries (by Claim 1).

