Solution of Problem 2008-2

KAIST 07 이병찬

$$
2008 / 09 / 17
$$

Prove that if x is a real number such that $0<x \leq \frac{1}{2}$ then x can be represented as an infinite sum

$$
x=\sum_{k=1}^{\infty} \frac{1}{n^{k}}
$$

where each n_{k} is an integer such that $\frac{n_{k+1}}{n_{k}} \in\{3,4,5,6,8,9\}$.

Solution

Let us remind the definition of decimical expansion; $x=\sum_{k=1}^{\infty} \frac{d^{k}}{10^{k}}$ (for $0 \geq$ $x \geq 1$). For example, when $x=1 / 3$,

$$
\begin{aligned}
& x \times 10-3>0, x \times 10-4<0 \text { so, } d_{1}=3 \\
& \left(x-\frac{3}{10}\right) \times 100-3>0,\left(x-\frac{3}{10}\right) \times 100-4<0 \text { so, } d_{2}=3 \\
& \cdots \\
& \left(x-\sum_{k=1}^{n-1} \frac{3}{10^{k}}\right) \times 10^{n}-3>0,\left(x-\sum_{k=1}^{n-1} \frac{3}{10^{k}}\right) \times 10^{n}-4<0 \text { so, } d_{n}=3
\end{aligned}
$$

I'll use similar argument to solve this problem. For convience, let $d_{1} \stackrel{\text { def }}{=}$ $n_{1}, d_{k} \stackrel{\text { def }}{=} \frac{n_{k}}{n_{k-1}} \in\{3,4,5,6,8,9\}\left(\right.$ so, $\left.n_{k}=\prod_{i=1}^{k} d_{i}\right)$ for $k>1$. For some $d_{1} \in \mathbb{N}, x-\frac{1}{d_{1}}>0$. Likewise, for some $d_{2} \in\{3,4,5,6,8,9\}$ such that $\left(x-\frac{1}{d_{1}}\right) \times d_{1}-\frac{1}{d_{2}}>0$. Reapeating this, for some $d_{k} \in\{3,4,5,6,8,9\}$ such
 this process as $k \rightarrow \infty$. Let $x_{k} \stackrel{\text { def }}{=} \sum_{i=1}^{k} \frac{1}{n_{i}}=\sum_{i=1}^{k} \prod_{j=1}^{i} \frac{1}{d_{j}}, a_{1} \stackrel{\text { def }}{=} x, a_{k} \stackrel{\text { def }}{=}$ $\left(x-x_{k-1}\right) \times n_{k-1}=\underbrace{\left.\left(\cdots\left(\left(x-\frac{1}{d_{1}}\right) \times d_{1}-\frac{1}{d_{2}}\right) \times d_{2}-\frac{1}{d_{3}}\right) \cdots-\frac{1}{d_{k-1}}\right) \times d_{k-1} . ~ . ~ . ~ . ~}_{k-1}$

Then, these process is reduced by

$$
a_{k}-\frac{1}{d_{k}}>0 \text { for some } d_{k}, a_{k+1}=\left(a_{k}-\frac{1}{d_{k}}\right) \times d_{k}=a_{k} d_{k}-1
$$

Using these equations, we will prove that any number in ($0, \frac{1}{2}$] can be represented as 'Strange representation' by proving some lemmas. Note that $\frac{1}{2}=\sum_{k=1}^{\infty} \frac{1}{3^{k}}, \frac{1}{8}=\sum_{k=1}^{\infty} \frac{1}{9^{k}}$ can be represented clearly.

Lemma 1. For all $\frac{1}{8} \leq a_{k} \leq \frac{1}{2}$, there is $d_{k} \in\{3,4,5,6,8,9\}$ such that $\frac{1}{8} \leq a_{k+1}=a_{k} d_{k}-1 \leq \frac{1}{2}$

Proof.

$$
\frac{1}{8} \leq a_{k} d_{k}-1 \leq \frac{1}{2}
$$

is equivalent to

$$
\frac{9}{8} \frac{1}{d_{k}} \leq a_{k} \leq \frac{3}{2} \frac{1}{d_{k}}
$$

So, define the closed intervals I_{n} such that $I_{n}=\left[\frac{9}{8} \frac{1}{n}, \frac{3}{2} \frac{1}{n}\right]$ for $n=3,4,5,6,8,9$. Then,
$I_{9}=\left[\frac{1}{8}, \frac{1}{6}\right], I_{8}=\left[\frac{9}{64}, \frac{3}{16}\right], I_{6}=\left[\frac{3}{16}, \frac{1}{4}\right], I_{5}=\left[\frac{9}{40}, \frac{3}{10}\right], I_{4}=\left[\frac{9}{32}, \frac{3}{8}\right], I_{3}=\left[\frac{3}{8}, \frac{1}{2}\right]$.
So, it implies that if $a_{k} \in I_{n}$ for some I_{n}, then $\frac{1}{8} \leq a_{k+1}=a_{k} n-1 \leq \frac{1}{2}$. But, since $\sup I_{9}=\frac{1}{6}>\inf I_{8}=\frac{9}{64}, \frac{3}{16}=\frac{3}{16}, \frac{1}{4}>\frac{9}{40}, \frac{3}{10}>\frac{9}{32}, \frac{3}{8}=\frac{3}{8}$, $\cup I_{n}=\left[\frac{1}{8}, \frac{1}{2}\right]$. That is, there is at least one $\mathrm{n} \in\{3,4,5,6,8,9\}$ such that $a_{k} \in I_{n}$ for all $\frac{1}{2} \leq a_{k} \leq \frac{1}{2}$ and it implies that for every $\frac{1}{2} \leq a_{k} \leq \frac{1}{2}$, there is $d_{k} \in\{3,4,5,6,8,9\}$ such that $\frac{1}{8} \leq a_{k} d_{k}-1 \leq \frac{1}{2}$ and it proves the lemma.
Lemma 2. For all $\frac{1}{8} \leq x \leq \frac{1}{2}, x$ can be represented as 'Strange representation'.

Proof. By lemma 1, there is $d_{1} \in\{3,4,5,6,8,9\}$ such that $a_{2} \in\left[\frac{1}{8}, \frac{1}{2}\right]$ since $x=a_{1} \in\left[\frac{1}{8}, \frac{1}{2}\right]$. Likewise we can prove that for every $k \in \mathbb{N}$ there is $d_{k} \in\{3,4,5,6,8,9\}$ such that $a_{k} \in\left[\frac{1}{8}, \frac{1}{2}\right]$ since since $a_{k-1} \in\left[\frac{1}{8}, \frac{1}{2}\right]$ (by using induction). We also need to prove wheter $\lim _{k \rightarrow \infty} x_{k}=x$. That is, for $\forall \epsilon>0$, there is $N \in \mathbb{N}$ such that

$$
k \geq N \Rightarrow\left|x-x_{k}\right|<\epsilon
$$

By definition, $a_{k}=\left(x-x_{k}\right) \times n_{k-1}$. So $\left|x-x_{k}\right|=\frac{a_{k}}{n_{k}}$. Since a_{k} are bounded above $\left(\leq \frac{1}{2}\right)$, and $n_{k}=\prod_{i=1}^{k} d_{i} \geq 3^{k}$ so we can make $\frac{a_{k}}{n_{k}}$ be arbitrary small.

So $\lim _{k \rightarrow \infty} x_{k}=x$ and $\forall x \in\left[\frac{1}{8}, \frac{1}{2}\right]$ can be represented as 'Strange representation'.

Now we can prove the original problem.
Theorem 3. For all $0<x \leq \frac{1}{2}$, x can be represented as 'Strange representation'.

Proof. If $\frac{1}{8} \leq x \leq \frac{1}{2}$, we proved the statement by Lemma 2 . If $0<x<\frac{1}{8}$, we will find $d_{0} \in \mathbb{N}$ such that

$$
\frac{1}{8} \leq x d_{0} \leq \frac{1}{2}
$$

It is equivalent to

$$
\left\lfloor\frac{1}{8 x}\right\rfloor \leq d_{0} \leq\left\lceil\frac{1}{2 x}\right\rceil
$$

and since

$$
\left\lceil\frac{1}{2 x}\right\rceil-\left\lfloor\frac{1}{8 x}\right\rfloor>\frac{1}{x}\left(\frac{1}{2}-\frac{1}{8}\right)>8 \times \frac{3}{8}=3>1
$$

, there must be an integer $d_{0} \in\left[\left\lceil\frac{1}{2 x}\right\rceil,\left\lfloor\frac{1}{8 x}\right\rfloor\right]$ as required. Now define $x^{\prime}=$ $x d_{0} \in\left[\frac{1}{8}, \frac{1}{2}\right]$ then x^{\prime} can be represented as 'Strange representation'. Let's denote $x^{\prime}=\sum_{k=1}^{\infty} n^{\prime}{ }_{k}=\sum_{k=1}^{\infty} \prod_{i=1}^{k} \frac{1}{d_{i}}$, then $x=\frac{x^{\prime}}{d_{0}}$ is represented as $x=$ $\sum_{k=1}^{\infty} \frac{1}{d_{0} n^{\prime}{ }_{k}}=\sum_{k=1}^{\infty} \prod_{i=0}^{k} \frac{1}{d_{i}}$ and this is the 'Strange representation' of x.
Remark. Unlike the continued fraction representation of the given number x, the 'Strange representation' is generally not unique. (If we ignore the trailing 1 in the continued fraction representation) For example,

$$
\begin{aligned}
& \frac{3}{8}=\frac{1}{3}+\frac{1}{3} \cdot \frac{1}{8}=\frac{1}{3}+\sum_{k=2}^{\infty} \frac{1}{3 \cdot 9^{k-1}} \\
& \frac{3}{8}=\frac{1}{4}+\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{4}+\sum_{k=2}^{\infty} \frac{1}{4 \cdot 3^{k-1}}
\end{aligned}
$$

are two distinct 'Strange representation' of $\frac{3}{8}$.

