Solution of Problem 2008-2

KAIST 07 이병찬

2008/09/17

Prove that if x is a real number such that $0 < x \le \frac{1}{2}$ then x can be represented as an infinite sum

$$x = \sum_{k=1}^{\infty} \frac{1}{n^k}$$

where each n_k is an integer such that $\frac{n_{k+1}}{n_k} \in \{3, 4, 5, 6, 8, 9\}.$

Solution

Let us remind the definition of decimical expansion; $x = \sum_{k=1}^{\infty} \frac{d^k}{10^k}$ (for $0 \ge x \ge 1$). For example, when x = 1/3,

$$\begin{aligned} x \times 10 - 3 &> 0, x \times 10 - 4 < 0 \text{ so, } d_1 = 3 \\ (x - \frac{3}{10}) \times 100 - 3 &> 0, (x - \frac{3}{10}) \times 100 - 4 < 0 \text{ so, } d_2 = 3 \\ \cdots \\ (x - \sum_{k=1}^{n-1} \frac{3}{10^k}) \times 10^n - 3 &> 0, (x - \sum_{k=1}^{n-1} \frac{3}{10^k}) \times 10^n - 4 < 0 \text{ so, } d_n = 3 \end{aligned}$$

I'll use similar argument to solve this problem. For convience, let $d_1 \stackrel{def}{=} n_1, d_k \stackrel{def}{=} \frac{n_k}{n_{k-1}} \in \{3, 4, 5, 6, 8, 9\}$ (so, $n_k = \prod_{i=1}^k d_i$) for k > 1. For some $d_1 \in \mathbb{N}, x - \frac{1}{d_1} > 0$. Likewise, for some $d_2 \in \{3, 4, 5, 6, 8, 9\}$ such that $(x - \frac{1}{d_1}) \times d_1 - \frac{1}{d_2} > 0$. Reapeating this, for some $d_k \in \{3, 4, 5, 6, 8, 9\}$ such that $\underbrace{(\cdots ((x - \frac{1}{d_1}) \times d_1 - \frac{1}{d_2}) \times d_2 - \frac{1}{d_3}) \cdots - \frac{1}{d_{k-1}}) \times d_{k-1} - \frac{1}{d_k} > 0$ and repeat $\underbrace{(x - \frac{1}{d_1}) \times d_1 - \frac{1}{d_2} \times d_2 - \frac{1}{d_3}) \cdots - \frac{1}{d_{k-1}}}_{k-1}$

this process as $k \to \infty$. Let $x_k \stackrel{def}{=} \sum_{i=1}^k \frac{1}{n_i} = \sum_{i=1}^k \prod_{j=1}^i \frac{1}{d_j}, a_1 \stackrel{def}{=} x, a_k \stackrel{def}{=} (x - x_{k-1}) \times n_{k-1} = \underbrace{(\cdots ((x - \frac{1}{d_1}) \times d_1 - \frac{1}{d_2}) \times d_2 - \frac{1}{d_3}) \cdots - \frac{1}{d_{k-1}}) \times d_{k-1}.$

Then, these process is reduced by

$$a_k - \frac{1}{d_k} > 0$$
 for some $d_k, a_{k+1} = (a_k - \frac{1}{d_k}) \times d_k = a_k d_k - 1$

Using these equations, we will prove that any number in $(0, \frac{1}{2}]$ can be represented as 'Strange representation' by proving some lemmas. Note that $\frac{1}{2} = \sum_{k=1}^{\infty} \frac{1}{3^k}, \frac{1}{8} = \sum_{k=1}^{\infty} \frac{1}{9^k}$ can be represented clearly.

Lemma 1. For all $\frac{1}{8} \leq a_k \leq \frac{1}{2}$, there is $d_k \in \{3, 4, 5, 6, 8, 9\}$ such that $\frac{1}{8} \leq a_{k+1} = a_k d_k - 1 \leq \frac{1}{2}$

Proof.

$$\frac{1}{8} \le a_k d_k - 1 \le \frac{1}{2}$$

is equivalent to

$$\frac{9}{8}\frac{1}{d_k} \le a_k \le \frac{3}{2}\frac{1}{d_k}$$

So, define the closed intervals I_n such that $I_n = \begin{bmatrix} \frac{9}{8} \frac{1}{n}, \frac{3}{2} \frac{1}{n} \end{bmatrix}$ for n = 3, 4, 5, 6, 8, 9. Then,

$$I_9 = \begin{bmatrix}\frac{1}{8}, \frac{1}{6}\end{bmatrix}, I_8 = \begin{bmatrix}\frac{9}{64}, \frac{3}{16}\end{bmatrix}, I_6 = \begin{bmatrix}\frac{3}{16}, \frac{1}{4}\end{bmatrix}, I_5 = \begin{bmatrix}\frac{9}{40}, \frac{3}{10}\end{bmatrix}, I_4 = \begin{bmatrix}\frac{9}{32}, \frac{3}{8}\end{bmatrix}, I_3 = \begin{bmatrix}\frac{3}{8}, \frac{1}{2}\end{bmatrix}$$

So, it implies that if $a_k \in I_n$ for some I_n , then $\frac{1}{8} \le a_{k+1} = a_k n - 1 \le \frac{1}{2}$. But, since $\sup I_9 = \frac{1}{6} > \inf I_8 = \frac{9}{64}, \frac{3}{16} = \frac{3}{16}, \frac{1}{4} > \frac{9}{40}, \frac{3}{10} > \frac{9}{32}, \frac{3}{8} = \frac{3}{8}, \cup I_n = [\frac{1}{8}, \frac{1}{2}]$. That is, there is at least one $n \in \{3, 4, 5, 6, 8, 9\}$ such that $a_k \in I_n$ for all $\frac{1}{2} \le a_k \le \frac{1}{2}$ and it implies that for every $\frac{1}{2} \le a_k \le \frac{1}{2}$, there is $d_k \in \{3, 4, 5, 6, 8, 9\}$ such that $\frac{1}{8} \le a_k d_k - 1 \le \frac{1}{2}$ and it proves the lemma. \Box

Lemma 2. For all $\frac{1}{8} \le x \le \frac{1}{2}$, x can be represented as 'Strange representation'.

Proof. By lemma 1, there is $d_1 \in \{3, 4, 5, 6, 8, 9\}$ such that $a_2 \in [\frac{1}{8}, \frac{1}{2}]$ since $x = a_1 \in [\frac{1}{8}, \frac{1}{2}]$. Likewise we can prove that for every $k \in \mathbb{N}$ there is $d_k \in \{3, 4, 5, 6, 8, 9\}$ such that $a_k \in [\frac{1}{8}, \frac{1}{2}]$ since since $a_{k-1} \in [\frac{1}{8}, \frac{1}{2}]$ (by using induction). We also need to prove wheter $\lim_{k\to\infty} x_k = x$. That is, for $\forall \epsilon > 0$, there is $N \in \mathbb{N}$ such that

$$k \ge N \Rightarrow |x - x_k| < \epsilon.$$

By definition, $a_k = (x - x_k) \times n_{k-1}$. So $|x - x_k| = \frac{a_k}{n_k}$. Since a_k are bounded above $(\leq \frac{1}{2})$, and $n_k = \prod_{i=1}^k d_i \geq 3^k$ so we can make $\frac{a_k}{n_k}$ be arbitrary small.

So $\lim_{k\to\infty} x_k = x$ and $\forall x \in \left[\frac{1}{8}, \frac{1}{2}\right]$ can be represented as 'Strange representation'.

Now we can prove the original problem.

Theorem 3. For all $0 < x \leq \frac{1}{2}$, x can be represented as 'Strange representation'.

Proof. If $\frac{1}{8} \leq x \leq \frac{1}{2}$, we proved the statement by Lemma 2. If $0 < x < \frac{1}{8}$, we will find $d_0 \in \mathbb{N}$ such that

$$\frac{1}{8} \le xd_0 \le \frac{1}{2}.$$

It is equivalent to

$$\lfloor \frac{1}{8x} \rfloor \le d_0 \le \lceil \frac{1}{2x} \rceil$$

and since

$$\lceil \frac{1}{2x} \rceil - \lfloor \frac{1}{8x} \rfloor > \frac{1}{x} (\frac{1}{2} - \frac{1}{8}) > 8 \times \frac{3}{8} = 3 > 1$$

, there must be an integer $d_0 \in \left[\left\lceil \frac{1}{2x} \right\rceil, \left\lfloor \frac{1}{8x} \right\rfloor\right]$ as required. Now define $x' = xd_0 \in \left[\frac{1}{8}, \frac{1}{2}\right]$ then x' can be represented as 'Strange representation'. Let's denote $x' = \sum_{k=1}^{\infty} n'_k = \sum_{k=1}^{\infty} \prod_{i=1}^k \frac{1}{d_i}$, then $x = \frac{x'}{d_0}$ is represented as $x = \sum_{k=1}^{\infty} \frac{1}{d_0n'_k} = \sum_{k=1}^{\infty} \prod_{i=0}^k \frac{1}{d_i}$ and this is the 'Strange representation' of x. \Box

Remark. Unlike the continued fraction representation of the given number x, the 'Strange representation' is generally not unique. (If we ignore the trailing 1 in the continued fraction representation) For example,

$$\frac{3}{8} = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{8} = \frac{1}{3} + \sum_{k=2}^{\infty} \frac{1}{3 \cdot 9^{k-1}}$$
$$\frac{3}{8} = \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{4} + \sum_{k=2}^{\infty} \frac{1}{4 \cdot 3^{k-1}}$$

are two distinct 'Strange representation' of $\frac{3}{8}$.