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Prove that if z is a real number such that 0 < x < % then x can
be represented as an infinite sum

=1
-3k
k=1
where each nj is an integer such that "Z—Zl €{3,4,5,6,8,9}.

Solution )
Let us remind the definition of decimical expansion; x =Y 72, %( for 0 >
x > 1). For example, when = = 1/3,

rx10-3>0,zx10—-4<0s0,d; =3
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(x_ﬁ)><100—3>O7(x—1—0)><100—4<080, dos =3
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I‘ll use similar argument to solve this problem. For convience, let d; ef

ny, di = % € {3,4,5,6,8,9}( so, ny, = Hle d;) for k > 1. For some
d € N, = — i > 0. Likewise, for some dy € {3,4,5,6,8,9} such that
(x — chl) X dp — % > (0. Reapeating this, for some dj, € {3,4,5,6,8,9} such
that (--- (2 —7-) xdi— z)xda— ) -~ —

)X d_1— i > 0 and repeat

dk—1
k—1
this process as k — oo. Let z = Sk n% =Sk H§:1 d%-’ ay =l x, ag =
— _ 1 1 Ly oo _1
(J:—a:k_l) xnk_l—('--((x d1) Xd1 d2) ng d3) dk—l) Xdk_l.
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Then, these process is reduced by

1 1
ap — dfk > 0 for some di,ar+1 = (ar — dik) X dp = apdy, — 1

Using these equations, we will prove that any number in (0, %] can be rep-

resented as ’Strange representation’ by proving some lemmas. Note that

=3 3%, T=30 9% can be represented clearly.

Lemma 1. For all % < ap < %, there is dy, € {3,4,5,6,8,9} such that
f<aprr =apdy —1< 3
Proof.
L < aid 1< 1
g = kT =5
is equivalent to
91 31

So, define the closed intervals I,, such that I,, = [%%, %%] forn =3,4,5,6,8,9
Then,

11 9 3 3 1 9 3 9 3 31
L=[c 2 =0, 2 Ig= 2 s = | = ] L= =], =[2, -
0= l3gh B =lgrighle =g b b=l b=l gk B =153

So, it implies that if a; € I, for some I,, then

<agy =agn —1 < 3.
9 3 3 — 3

But, since sup lg = % > inflg = = 3 3

|00 =

9
61° 16 — 16> 4 ~ 400 10 ~ 320 8 — &
ul, = [%, %] That is, there is at least one n € {3,4,5,6,8,9} such that
ay € I, for all % <a < % and it implies that for every % <a < %, there is
d, € {3,4,5,6,8,9} such that % <apdp—1< % and it proves the lemma. [

Lemma 2. For all % <z< %, x can be represented as ‘Strange representa-
tion’.

Proof. By lemma 1, there is d; € {3,4,5,6,8,9} such that ay € [%, %] since
= a; € [§,3]. Likewise we can prove that for every k € N there is
dr € {3,4,5,6,8,9} such that aj, € [§, 3] since since a;_1 € [}, 3](by us-
ing induction). We also need to prove wheter limy_, ., xx = x. That is, for
Ve > 0, there is N € N such that

k>N = |z -z <e.

By definition, ay = (z — xx) X ng_1. So |z — x| = Z—’Z Since aj, are bounded

above(< %), and n; = Hle d; > 3% so we can make Z—i be arbitrary small.
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So limy_,o 2 = = and Vz € [%, %] can be represented as 'Strange represen-
tation’.
O

Now we can prove the original problem.

Theorem 3. For all0 < x < %, x can be represented as ’Strange represen-
tation’.

Proof. If % <z< %, we proved the statement by Lemma 2. If 0 < x < %,
we will find dy € N such that

1 1
— < xdy < =.
g =T =5
It is equivalent to
1 1
il d il
o] <do <o
and since ) ) L1 1 5
—| == —(= == 8x —=3>1
1 Tl > G- > 8xg=3>

, there must be an integer do € [[5], |5 ]] as required. Now define 2’ =

X
xdy € [%, %] then 2’ can be represented as ’Strange representation’. Let‘s
/.
denote /' = S°5° 0y = 3200, T1E, d%_, then » = 7. is represented as z =

POy m =37 Hf:o d%- and this is the ’Strange representation’ of xz. [
Remark. Unlike the continued fraction representation of the given number

x, the 'Strange representation’ is generally not unique. (If we ignore the
trailing 1 in the continued fraction representation) For example,

3 1 11 1 & 1
8_3+$8_3+Z;&%4
3 01 11 1 & 1
8_4+42_4+;;4%1

are two distinct 'Strange representation’ of %.



