POW problem 1: Solution

Kim, Chiheon(MAS dep., Junior)

September 9, 2008

I observed some numbers using Maple, and I found a rule. Here I propose the lemma:

Lemma 1 Given a positive integer n. If an integer a is greater or equal to n^{n-1}, then $a+1, a+2, \ldots, a+n$ have distinct prime factors, that is, we can choose distinct n primes each divides each of $a+1, a+2, \ldots, a+n$.

If we choose k numbers among $a+1, a+2, \ldots, a+n$, then we can choose k distinct primes each divides each of them. Hence, we are done if the lemma is true.
(proof) Let $1 \leq k \leq n$. If $a+k$ has a prime factor $p \geq n$, then

$$
\operatorname{gcd}(a+k, a+j)=\operatorname{gcd}(a+k,|j-k|) \leq|j-k|<n \leq p .
$$

Hence, p does not divide any $a+j$, if $j \neq k$. In this case, choose p.

Now, assume that $a+k$ have only prime factors smaller than n, i.e.,

$$
a+k=q_{1}^{e_{k 1}} \ldots q_{r}^{e_{k r}}
$$

where $2=q_{1}<q_{2}<\ldots<q_{r}$ are all primes less than n. Notice that

$$
n^{n-1}<a+k=q_{1}^{e_{k 1}} \ldots q_{r}^{e_{k r}}
$$

and $r<n-1$. Hence, there is $1 \leq s_{k} \leq r$ such that $q_{s_{k}}^{e_{k s_{k}}}>n$. Choose $q_{s_{k}}$. (\because Product of $r<n-1$ numbers is greater than n^{n-1}.)

We need to show such s_{k} are distict. If $s_{k}=s_{j}$ for some $j \neq k$, then $\min \left\{q_{s_{k}}^{e_{k s_{k}}}, q_{s_{k}}^{e_{j s_{k}}}\right\}>n$ divides $\operatorname{gcd}(a+k, a+j)$. So,

$$
n<\operatorname{gcd}(a+k, a+j)=\operatorname{gcd}(a+k,|k-j|)<n .
$$

It is a contradiction. So $s_{j} \neq s_{k}$ for any $j \neq k$.
Hence, we can choose different prime factors from each $a+1, \ldots, a+n$.

