Friday, May 23, 2025

<< >>  
2025. 4
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
2025. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
2025. 6
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
2025-05-27 / 16:00 ~ 17:00
SAARC 세미나 - SAARC 세미나: 인쇄
by 김기현(서울대학교 수리과학부)
This talk concerns the classification problem of long-term dynamics for critical evolutionary PDEs. I will first discuss critical PDEs and soliton resolution for these equations. Building upon soliton resolution, I will further introduce the classification problem. Finally, I will also touch on a potential instability mechanism of finite-time singularities for some critical PDEs, suggesting the global existence of generic solutions.
2025-05-26 / 16:00 ~ 17:30
편미분방정식 통합연구실 세미나 - 편미분방정식: Regularity of solutions of shock reflection by large-angle wedges for potential flow 인쇄
by 강수민()
Abstract : When a plane shock hits a wedge head on, it experiences a reflection diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time. In particular, the C^{1,1}-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock where the wedge has large-angle. Also, one can obtain the C^{2,\alpha} regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. Reference : Myoungjean Bae, Gui-Qiang Chen, and Mikhail Feldman. "Regularity of solutions to regular shock reflection for potential flow." (2008) Gui-Qiang Chen and Mikhail Feldman. "Global Solutions of Shock Reflection by Large-Angle Wedges for Potential Flow"
2025-05-30 / 11:00 ~ 12:00
IBS-KAIST 세미나 - IBS-KAIST 세미나: 인쇄
by ()
Spontaneous rhythmic oscillations are widely observed in real-world systems. Synchronized rhythmic oscillations often provide important functions for biological or engineered systems. One of the useful theoretical methods for analyzing rhythmic oscillations is the phase reduction theory for weakly perturbed limit-cycle oscillators, which systematically gives a low-dimensional description of the oscillatory dynamics using only the asymptotic phase of the oscillator. Recent advances in Koopman operator theory provide a new viewpoint on phase reduction, yielding an operator-theoretic definition of the classical notion of the asymptotic phase and, moreover, of the amplitudes, which characterize distances from the limit cycle. This led to the generalization of classical phase reduction to phase-amplitude reduction, which can characterize amplitude deviations of the oscillator from the unperturbed limit cycle in addition to the phase along the cycle in a systematic manner. In the talk, these theories are briefly reviewed and then applied to several examples of synchronizing rhythmic systems, including biological oscillators, networked dynamical systems, and rhythmic spatiotemporal patterns.
2025-05-30 / 11:00 ~ 12:00
IBS-KAIST 세미나 - IBS-KAIST 세미나: 인쇄
by ()
Spontaneous rhythmic oscillations are widely observed in real-world systems. Synchronized rhythmic oscillations often provide important functions for biological or engineered systems. One of the useful theoretical methods for analyzing rhythmic oscillations is the phase reduction theory for weakly perturbed limit-cycle oscillators, which systematically gives a low-dimensional description of the oscillatory dynamics using only the asymptotic phase of the oscillator. Recent advances in Koopman operator theory provide a new viewpoint on phase reduction, yielding an operator-theoretic definition of the classical notion of the asymptotic phase and, moreover, of the amplitudes, which characterize distances from the limit cycle. This led to the generalization of classical phase reduction to phase-amplitude reduction, which can characterize amplitude deviations of the oscillator from the unperturbed limit cycle in addition to the phase along the cycle in a systematic manner. In the talk, these theories are briefly reviewed and then applied to several examples of synchronizing rhythmic systems, including biological oscillators, networked dynamical systems, and rhythmic spatiotemporal patterns.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download