Friday, February 11, 2022

<< >>  
2022. 1
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
2022. 2
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28
2022. 3
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
2022-02-16 / 10:00 ~ 12:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by 김찬우()
We talk about a convergence of kinetic vorticity of Boltzmann toward the vorticity of incompressible Euler in 2D. The talk would be self-contained (1) covering necessary background in basic Boltzmann theory, asymptotic expansion (Hilbert expansion). (2) When the Euler vorticity is below Yudovich, we prove a weak convergence toward Lagrangian solutions, (3) while for the Yudovich class we have a strong convergence toward a unique solution with a rate.
2022-02-15 / 13:00 ~ 15:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by 김찬우()
We talk about a convergence of kinetic vorticity of Boltzmann toward the vorticity of incompressible Euler in 2D. The talk would be self-contained (1) covering necessary background in basic Boltzmann theory, asymptotic expansion (Hilbert expansion). (2) When the Euler vorticity is below Yudovich, we prove a weak convergence toward Lagrangian solutions, (3) while for the Yudovich class we have a strong convergence toward a unique solution with a rate.
2022-02-14 / 13:00 ~ 15:00
학과 세미나/콜로퀴엄 - PDE 세미나: 인쇄
by 김찬우()
We talk about a convergence of kinetic vorticity of Boltzmann toward the vorticity of incompressible Euler in 2D. The talk would be self-contained (1) covering necessary background in basic Boltzmann theory, asymptotic expansion (Hilbert expansion). (2) When the Euler vorticity is below Yudovich, we prove a weak convergence toward Lagrangian solutions, (3) while for the Yudovich class we have a strong convergence toward a unique solution with a rate.
2022-02-17 / 11:00 ~ 12:00
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()

2022-02-16 / 15:00 ~ 16:00
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()

2022-02-15 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Independent domination of graphs with bounded maximum degree 인쇄
by 김진하(IBS 이산수학그룹)
An independent dominating set of a graph, also known as a maximal independent set, is a set $S$ of pairwise non-adjacent vertices such that every vertex not in $S$ is adjacent to some vertex in $S$. We prove that for $\Delta=4$ or $\Delta\ge 6$, every connected $n$-vertex graph of maximum degree at most $\Delta$ has an independent dominating set of size at most $(1-\frac{\Delta}{ \lfloor\Delta^2/4\rfloor+\Delta })(n-1)+1$. In addition, we characterize all connected graphs having the equality and we show that other connected graphs have an independent dominating set of size at most $(1-\frac{\Delta}{ \lfloor\Delta^2/4\rfloor+\Delta })n$. This is joint work with Eun-Kyung Cho, Minki Kim, and Sang-il Oum.
2022-02-18 / 10:30 ~ 11:45
학과 세미나/콜로퀴엄 - 대수기하학: An introductory guide to mixed Hodge modules #2 인쇄
by 정승조(전북대학교)
Morihiko Saito's theory of mixed Hodge modules is a far generalisation of classical Hodge theory, which is based on the theory of perverse sheaves, D-modules, variations of Hodge structures. One can think of mixed Hodge modules as a certain class of D-modules with Hodge structures. Naturally they are accompanied by perverse sheaves via the Riemann–Hilbert correspondence. This guide consists of about 8 talks, which may cover: review of classical Hodge theory, D-modules and filtered D-modules, nearby and vanishing cycles, etc. The main goal is to understand the notion of mixed Hodge modules and to explain two important theorems: the structure theorem and the direct image theorem. If time permits, we discuss recent applications of the theory in algebraic geometry.
2022-02-11 / 10:30 ~ 11:45
학과 세미나/콜로퀴엄 - 대수기하학: An introductory guide to mixed Hodge modules #1 인쇄
by 정승조(전북대학교)
Morihiko Saito's theory of mixed Hodge modules is a far generalisation of classical Hodge theory, which is based on the theory of perverse sheaves, D-modules, variations of Hodge structures. One can think of mixed Hodge modules as a certain class of D-modules with Hodge structures. Naturally they are accompanied by perverse sheaves via the Riemann–Hilbert correspondence. This guide consists of about 8 talks, which may cover: review of classical Hodge theory, D-modules and filtered D-modules, nearby and vanishing cycles, etc. The main goal is to understand the notion of mixed Hodge modules and to explain two important theorems: the structure theorem and the direct image theorem. If time permits, we discuss recent applications of the theory in algebraic geometry.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download